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PREFACE

This special issue of Publications in Geomatics contains only one monograph a main
part of which was published as the PhD dissertation of Judit Benedek in 2009 at the
West Hungarian University Sopron in Hungarian language. In the meantime the
author revised its content based on partly the comments and recommendations of the
referees (Dr. Laszlo Szarka and Dr. Gyula To6th) of her thesis work and partly her
own experience in the application of the algorithms she wrote for synthetic
gravitational modeling. Consequently the monograph is an improved version of the
original dissertation containing some new achievements and details in its topic.

The publication of this volume was financed by the Research Centre for
Astronomy and Earth Sciences of the Hungarian Academy of Sciences. The
manuscript was revised by Dr. Martin Vermeer (Aalto University, Helsinki, Finland)
and Dr. Ern6 Pracser (MTA CSFK GGI, Sopron, Hungary).

Gabor Papp
editor in chief
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SYNTHETIC MODELLING OF THE GRAVITATIONAL FIELD

Benedek Judit”

e=iss This work makes an attempt to summarise and complete the analytical formulas of
gravitational potential of the homogeneous polyhedral body and its first and second order derivatives.
The Newtonian integral over the volume of a polyhedral body can be expressed as a summation of
closed analytical functions evaluated at facet vertices using transformations to surface and line
integrals. The ultimate results can be expressed as a sum of arcus tangent and logarithm terms at
both ends of every edges of every face. The analytical formulas for the gravitational field of a
homogeneous polyhedral body (gravitational potential and its first derivatives) given by Pohanka was
implemented in a Fortran program developed by the author and completed with formulas of second
derivatives of potential. The numerical stability of polyhedron-based models was studied in points
close to and far from the effective source giving the limits where the analytical formulas became
senseless or the numerical error dominates in the computed value.

The time needed for calculating the gravitational potential and its first and second order
derivatives with the algorithm developed is ~2 times more using polyhedrons than the one optimised
by D Nagy for rectangular prisms, applying double precision arithmetic.

In the second part of the work an outlook on the possible future applications of gravity field
modelling using polyhedron volume elements is presented.

Keywords: polyhedron, gravity modelling, gravitational potential

A dolgozat célja a homogén poliéder térfogatelem tomegvonzasi erdterét leiro potencialt illetve a
potencidl elsé és masodrendii derivaltjait leiré analitikus fiiggvények dsszefoglalasa és a koztiik levd
kapcsolatok bemutatdsa a szakirodalomban megtaldlhato képletek alapjan. Azokban az esetekben,
amikor csak az elsérendii derivaltak keriiltek publikdlasra, a dolgozatban levezetésre keriiltek a
madsodrendii formuldk is. A poliéder tomegvonzdsi erdterét leiré Newton térfogat integral a polieder
lapokon illetve éleken torténd zart analitikus képletek Osszegezése, mely a prizmaformuldkhoz
hasonloan arcus tangens és logaritmus tagokat tartalmaz. Az analitikus képletek mindegyike
felhasznalja a nevezetes integralatalakito teteleket, melyek segitségével attérhetiink térfogat
integralrol feliileti integralra, illetve feliileti integralrol vonal integrdlra. Modellszamitasokhoz a
poliéder térfogatelem tomegvonzasi potencidljanak és elsérendii derivaltiainak a Pohanka dltal
kozolt képletei illetve a szerzé dltal levezetett potencidl mdsodrendii derivalt képletei keriiltek
programozasra Fortran nyelven. A tanulmdny vizsgadlja a poliéder térfogatelem potencidlja, elsé és
mdsodrendii derivalt fiiggvényeinek stabilitisat a poliéder kozeli illetve tavoli tartomdnyaiban,
megadva az egyes analitikus fiiggvenyek értelmezési tartomanyat és a képletek numerikus stabilitasat.

A poliéder térfogatelemek dtlag generalt erétér paramétereinek duplapontossiggal torténd
Szdamitdas ideje ~2-szerese a prizma térfogatelemhez viszonyitva.

A dolgozat masodik része egy rovid kitekintés a poliéder térfogatelemmel torténé erotér
modellezés lehetséges alkalmazasi teriileteire a geotudomanyokban.

Kulcsszavak: poliéder, gravitacios modellezés, tomegvonzasi potencial
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NOTATION

aeA aisan element of A

agA a is not an element of A

AcB A'is a subset of B

a) intersection of two sets

V) union of two sets

A\B the difference of set A from B

AxB Cartesian product of Aand B, Ax B = {(a,b)| acAbe B}

R" real coordinate space of n dimension, consist of all ordered n-couples (Xl, Xy, Xy ) )
where the x; are real numbers

Q closure of Q < R" is a set which contains all its limit points, i.e. Q =QuUQ’, where Q'
is the set of limit points of Q

oQ boundary of Q c R", 8Q=Q1Q

1Ln natural numbers from 1 to n which is the {1,2,...,n} set

| x| Euclidian norm of xe R, | x|=y/x? +xJ +..+x2 , where x = (x,,x,,....x,)

& M,¢) is an open 3-ball of radius ¢ and centre M in R®  Euclidian space,
2(M.e)={u e R [Ma| < ¢}

2(M,¢) is an open 2-ball of radius ¢ and centre M in R? Euclidian space,
(M, ¢)= {M’eRz‘ MM <g}

C(Q) Let B=(B.p,.....8,)e N" be a multi-index and let | B|= 5, + B, +...+ B, be the

B
order of multi-index, then p” £ = S, x300%,) _

8xlﬂ‘ ..Bxlﬂ"

CP(Q) denote the set of all f functions defined on Q < R"that are continuous in Q together
with all partial derivatives Df, where| 8 |< p.
denotes the scalar or dot or inner product of two vectors. If a = (al,az,a3), b= (bl,bz,b3)
then a-b= (albl +a,b, + a3b3)= abcosg, where ¢ is the angle between a and b, a and
b denotes the magnitude of the vectors a and b: a = \/af +a; +a; b= \/bf +b; +b;

x denotes the vector or cross product of two vectors. a x b is defined as a vector c that is
perpendicular to both a and b, with a direction given by the right-hand rule and the
magnitude equal to the area of the parallelogram that the vectors span, |c | =absin ¢,
whereg is the angle between a and b, a and b are the vectors magnitude

o denotes the dyadic product of a = (a,,a,,a,) and b=(b,,b,,b,) is acb = [aib/Ji,jzfs

; . o, 0, 0 . :

\% denotes the Hamilton or nabla operator: V = 6—1 +—j+ 6_k , Where i, j, k are the unit

X zZ
vectors of the coordinate system
vu if u: R® >R is a scalar field, M is a point in R®with X, y, z coordinates, r,, = (x,,z) is

the position vector belonging to the M point,
gradu=Vu=V, u(M):a_u,'+a_”j+a_”
M ax 6)/ a

Geomatikai Kozlemények X1X, 2016
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vu if u: R°®>R3® is a vector field, M is a point in R® with X, y, z coordinates,
u(M) =u, (x,y,z)i + uz(x,y,z)j + u3(x,y,z)k is a vector and
Vu:%-k%-k%:divu
ox oy Oz

dist(M, Q) is the distance from the point MeR" to the QcR" domain defined as:
dist(M, Q) = min MP
PeQ

proj,(M)  projection of MeR" on QcR" is a point M’ defined as: proj, M = M’ and
dist(M,Q)= MM’

Geomatikai Kozlemények XIX, 2016
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Introduction — Precedents and objectives of the research

The research, the results of which are presented in this thesis, is the continuation of the F014284!
(finished in 1997) and T0253182 (finished in 2001) National Scientific Research Fund programs
(OTKA). The first version of the 3D density model of the lithosphere of the Pannonian basin (Papp
1996a) was created in the framework of F014284 National Scientific Research Fund research
program. That model used the rectangular prism as a volume element. Different versions of the geoid
were computed by its application for the territory of Hungary. Such a 3D model makes possible —
with specific conditions — to determine different parameters of the gravity field (gravitational
acceleration, geoid undulation, gravitational potential, gravity anomaly) analytically. Furthermore,
because of the rigorous functional relations between the parameters of the field created from the
density model by forward modelling, it is possible to test numerical methods (for example a specific
solution of the Stokes integral) which transform from one system of parameters to another one. In the
T025318 OTKA research program the lithosphere model was extended to describe the Carpathian-
Pannonian Region. One of the aims of this program was to determine the gravitational field lines
going through the topographic masses using forward modelling techniques. Based on the model
calculations it was possible to study the order of difference between the horizontal coordinates of a
specific surface point obtained from GPS measurements (Helmert projection) and its projection point
corresponding to its elevation coordinate determined by levelling (Pizetti projection). Furthermore, it
became possible to compute the free-air gradient (second order partial derivative in the vertical
direction of the gravity potential) using analytical methods and it was also possible to determine the
terrestrial distribution of deviations from its normal value within the Pannonian Basin (Csap6 and
Papp 2000). Based on the model used for the investigations detailed above | tested the effect of the
point density of gravity data on the accuracy of geoid undulations determined by the Stokes-FFT
method (Benedek 2000, 2001). For the test all geodetic boundary values (gravity anomalies) and also
the boundary surface to be determined (geoid undulation) were derived analytically from the model.

The OTKA studies mentioned above indicated that the refinement of the model is beneficial in
some applications. One possibility is to apply a more realistic volume element which improves the
geometrical description of the structural surfaces. Such a simple geometric element is the polyhedron,
because it allows creating bodies bounded with oblique surfaces. Its application can provide a more
realistic geometrical description of boundary surfaces, without height jump which is an unavoidable
artifact of the description made by rectangular prisms. In this way, the artificial gravitational effect
due to the step-like structure can be eliminated. The stepped structure mainly influences the second
and the third order derivatives of the potential in near surface points. Furthermore, the effect of the
Earth's curvature can be taken into consideration during computations, because the polyhedral
geometry allows the description of this model in a global coordinate system (e.g. WGS84). Compared
to the rectangular prisms the analytical formulas of the polyhedron’s gravitational potential and its
higher order derivatives are more complicated so their calculation is more time consuming.

One aim of my thesis was to compare the contributions to geoid undulation and gravity anomaly
synthetically computed from polyhedron and rectangular prism models describing the crustal
structure of the Carpathian-Pannonian region. Furthermore, | wished to compare the second order
vertical derivatives determined from these two models in near-surface points by forward modelling.
In this comparison I wanted to involve in situ measurements (Csapd and Papp 2000) so I chose the
Soskut testing area of Tech. Univ. Budapest (TUB) as a target area for model computations. The third
aim was to give an estimate of the gravitational contribution of the different geological units such as
topography, upper mantle and Neogene-Quaternary sedimentary complex to the second derivatives

! National Scientific Research Fund Nr. F014284: “High precision modelling of the gravity field and geoid computation in
Carpathian-Pannonian Region”, 1994-1997, Principal Investigator: Papp Gabor

2 National Scientific Research Fund Nr. T025318: “The effect of local characteristics of the Earth’s gravity field on geodetic
coordinates”. Simulation studies in the Pannonian basin, 1998-2001, Principal Investigator: Papp Gabor

Geomatikai Kozlemények X1X, 2016
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of disturbing potential, i.e., to the elements of the E6tvds tensor by using the extended, regional scale
(Alpine—Pannonian—Carpathian region) lithosphere model. | wanted to study whether the on board
gradiometric observations of the GOCE (Gravity and Steady-State Ocean Circulation Experiment)
satellite could be applicable to deduce some regional information about the horizontal density
variation of the crust as well. | aimed also to derive formulas for the transformation of the computed
second derivatives of the potential in local (using the rectangular prism as volume element) and in
global (using the polyhedron as volume element) coordinate systems. Based on this | also wanted to
determine the effect of the Earth's curvature on field parameters.

I wished to study the analytical behaviour of the formula given for the gravitational potential of
the polyhedron volume element and the numerical characteristics of its higher order derivatives in
points close to and far from the effective source, and also the accuracy of model computation and the
time-consumption of the analytical formulas.

Research methods and results

I applied the theorems of the potential theory to define the domains of formulas describing first and
second derivatives of the gravitational potential and the potential itself generated by the polyhedrons.

Using vector analysis | derived analytical formulas for the gravitational potential and its first and
second derivatives of the polyhedrons.

I developed a program system in the HP Fortran language for computing the gravitational potential
of the polyhedron and the first and second derivatives of the potential.

For the forward modelling of the gravity field related quantities | used different models of the
topography of the Alpine—Pannonian—Carpathian (ALPACA) region built up with triangular prisms
and polyhedrons as volume elements.

Computational and modelling results were compared to measurements in certain cases and |
managed to show the advantages of using the polyhedron models.

I used different coordinate systems (planar and global) which are transformable into one-another.
| applied various models (elementary and optimised) of rectangular prisms generated by different
methods representing the local (planar) mapping system and polyhedron elements defined in the
global Cartesian coordinate system. These models are also transformable into one-another (there is a
one-to-one geometrical correspondence between the corner points of prisms and polyhedrons). Using
these models | was able to estimate the effect of the Earth's curvature.

In my thesis | summarised and completed the analytical formulas of the gravitational potential and
its first and second order derivatives of the polyhedron volume element. Using vector analysis | gave
a uniform derivation for the formulas. | demonstrated that passing from surface integrals to contour
integrals using either the Gauss-Ostrogradsky or the Stokes theorem leads to finding the same vector
function, and to define it one has to solve a quasi-linear differential equation. | proved that the domains
of the analytical formulas could be extended to the domains dedused from potential theory, thus the
singularities of the formulas can be eliminated.

I studied the numerical stability of the polyhedron-based model in points close to and far from the
effective source giving each point location those limits where 1) the analytical formulas become
senseless or 2) the numerical error is dominating in computed value. As far as first derivative of the
potential is concerned | completed the relation given by Holstein and Ketteridge (1996) and Holstein
et al. (1999) with new relations about the potential and its second order derivatives. | showed by
double precision computations that using the polyhedral model of the ALPACA region the error of
the forward computation of the second order derivatives of the potential is less than 1% within the
studied area.

I compared the runtimes of the potential and its derivatives applying the polyhedron algorithm
and the code for the rectangular prism optimised by Nagy (1988).

Based on a 5 km x 5 km DTM of the Carpathian Basin and a 500 m x 500 m DTM of Hungary |
created polyhedron and different type (elementary and optimised) rectangular prism models for both
territories. Both in the elementary rectangular prism and the polyhedron models the horizontal
dimensions of the volume elements are equal to the resolution of the relevant DTM, while the vertical

Geomatikai Kozlemények XIX, 2016
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dimensions of the volume elements are equal to the values given by the DTM point. Another
rectangular prism model (optimised) was created based on the minimum number of volume elements
principle (Kalmar et al. 1995). Using various models developed from a 5 km x 5 km DTM, the order
of the average and the standard deviation of the computed gravitational disturbance at the geoid level
is about -0.1 mGal and £0.5 mGal throughout the 800 km x 600 km computational area which includes
also the territory of Hungary. In the second application | used models derived from 500 m x 500 m
DTM, and the computation was made on a 165 km x 150 km territory of the Northern Mid Mountains
Range. The computations which were performed at the geoid level show that the differences between
the results computed from optimised prism and polyhedron models appear more remarkable on the
low plains than on higher territories.

A big advantage of the polyhedron volume element is that it can describe the surface without
jumps in height, so the second order derivatives of potential in z are much smoother and more realistic
in near surface parts. It can be deduced from the study carried out on the Séskut test area of TUB that
in accordance with the theory the second order derivatives computed from the polyhedron model at
1 m height above the topographic surface are correlating fairly well with topography. To model the
second order derivatives of the potential in near-surface points the polyhedron volume element is
needed. Even if the rectangular prism model is derived from a 10 m x 10 m DTM the variation of the
derivatives between adjacent points (for example points of the 25 m x 25 m grid) can be too (unreal)
high. Therefore the correlation between the values itself and the surface is low. In the six point of the
Soskut geodetic network dedicated for studying deformation, vertical gradient (VG) values computed
from the polyhedron model of the area fit well with the measurements (Csap6 and Papp 2000) apart
from a shift, but the values obtained from the rectangular prism model are in contradiction with the
measured values.

From results of the synthetic gravitational modelling for the planned orbit altitude (~250 km) of
GOCE satellite it was found that the individual contribution of the topography and the upper mantle
to the second derivatives of the disturbing potential reaches 1 Eo6tvos. In case of the Neogene-
Quaternary sediments this contribution is several hundredths of an E6tvos unit only, but this is still
higher than the projected measurement sensitivity. As the topography and the density distribution of
the sediments are known much better than the density contrast at Moho-the boundary between the
lower crust and the upper mantle — we can use their synthetically modeled contributions as correction
in relation with the measurements at orbit altitude. Residuals (i.e. GOCE measurements — corrections)
can be converted into density values with inversion, so the density contrast at the Moho surface can
be estimated more precisely.

For forward computation of the contribution of the topography the polyhedron model is
recommended (i.e. using a global coordinate system) because of the effect of the Earth's curvature for
this component is greater than the sensitivity of the satellite gradiometer. When computing the
contribution of the effect of the sediments it is enough to use a local coordinate system, i.e. rectangular
prisms because the effect of the curvature is estimated to be in the order of the noise range. If 10%
accuracy is enough, then the local system is sufficient for the inversion.

Geomatikai Kozlemények X1X, 2016
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1 The Newton (volume) potential

1.1 Review of the applied mathematical formulas

In this paragraph generally known theorems from potential theory and vector calculus based on the
Vlagyimirov (1979) and Tyhonov and Samarsky (1964) works are presented without proof. During
this work we will refer to these theorems.

1.1.1 The integral theorems
1. The divergence theorem (Theorem of Gauss and Ostrogradsky)

Suppose X is a subset of R" which is compact (X < R" is compact if and only if it is closed and
bounded) and has a piecewise smooth boundary* 6£=S. If n is the outward pointing unit normal field
of the boundary 0%=S, and w(wl,wz,...,wn):fﬁ R™, wy = wi(xy, Xg, oo, Xp) , k= 1,n is a
continuously differentiable vector field on % and continuous on the boundary of £, w € C(Z) n
C?(%), then we have:

Iijv-wdv:gwda:gw'nda, @)

where do is the oriented surface element. This vector is belonging to the surface element do of S
(Fig. 1), has the same direction as the n vector, the length of this vector is equivalent with the area of

dosurface element, i.e. do =ndo ,and V-w = divw = Z’{;l%.
Observation
1. In R® the theorem stands for a S surface which has a continuously varying tangent plane
excepting a finite number of corners and edges.
2. A special case of the Gauss-Ostrogradsky theorem when w = u is a scalar function in R®,
then:

W%‘”: [Julw,3,2)-cosmi)dor @

where i is the unit vector in the x direction, and (n,i) denotes the angle between the normal
of the surface and the x axis.
3. Invirtue of observation 2:

J _[ Vudv = I I ude (gradient theorem), ©))
z S

where Vu = gradu = (%) .
i=1,n

4. The Gauss-Ostrogradsky theorem in a 3D Cartesian coordinate system:

J‘J‘ wydydz + w,dzdx + w,ydxdy = H o + oy + oy xdydz
s Y\ox oy Oz

! The surface S belongs to the CP, p>1 classes, which is set of all differentiable functions whose derivative is in CP2, if for all
Xo €S A%, vicinity of the point xo wherein the surface can be described analytically: wyo(x) = 0, xe Z4, where gradmyo(x) = 0 in
4o, in addition the wyo function has all partial derivatives of order up to p continuous on Z%. The picewise smooth surface S
consists of finite C*surfaces.
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2. Stokes theorem

Let w be a C* vector field defined on an open set = < R®. Let S be a bounded and piecewise smooth
and oriented surface contained entirely within X with boundary S = I" which carries the orientation
induced by S which is compatible with the right-hand rule (if we walk along I" in the direction of the
orientation induced by S with and our head points in the direction of the unit normal for S, then S will
be on our left-hand side) (Fig 1). Then:

,[J(VXW)-d0=J;I(VXW)-nda=jr'wdl, @

where Vxw =rotw = (

of the T curve.

X,

Fig. 1 The illustration of the quantities used in the Stokes theorem

3. Green theorem

Let I be a positively oriented?, piecewise smooth, simple closed? curve in R?. Let S < R? be the region
bounded by T. If w(w;,w,):SUT - R?and w e C'(S)nC(TC'US), then:

ﬂ( R ]dxdy [wedr. ©)

Observations

1. The theorem holds for I" having continuous tangent except at a number of finite points, or
more generally, a set of zero measure.
2. The Green theorem is a special case of the Stokes theorem taking the

w(w,,w, )w, =w, (x, ),k =12, planar vector field. This relation can easily be derived using
the following relation:

rot w (w,,w, ) = rot w (w,,w,,0)= [ ow, 5Wj

“ox Oy

3. The Green theorem is a special case of Gauss-Ostogradsky theorem for n=2. In this case
3=, 05 =T, w(w,w,)w, = w,(x,y) is a plane vector field, n = (ny, ny) is the normal vector
of I'. Let e and g be the angle of a I curve with the coordinate axes.

1 1f we walk in the direction of the positive orientation for T then the interior of I" is always on our left-hand side
2 1s a closed curve which does not intersect itself
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We have:

H Ow, dxdy = J.wznldl = J-w2 cosadl and —H%dxdy = —J.wlnzdl = J.wl cos f3dl
S ax r r S ay I r

and this yields the relation (5).
4. The relation (5) in case of w = u scalar function is:

ﬂ oulx.y) 4 [ul,)- cos(mi)d . ©6)

4. Green formulas

Let = = R"be a bounded solid region, with a piecewise C* (smooth) boundary surface 6£=S. Let n be
the unit outward normal vector on S. Let u and v be scalar fields (vector-scalar function),

u,veC' (E)m C*(2), one gets:

_[Vu -Vvdv= Iu @da - IuAvdv (Green first identity), @)
z N 6” z

ov  ou . .
_[(uAv— VAU )dv = j u——v=— ldo (Green second identity), (8)
s s\ on on

2 2 5
where Vuzgradu:(au Ou 6_”] ’ u_au ou ou

— s =——+—+.+— is the Laplace operator,
ox, oOx, 0Ox, Ox, Ox, ox

n

% = g—” is the directional derivative of u in the direction of the outward pointing normal n to
n 5 ox

the surface element do.

Observation

. . L A
1. Green first relation can be extend for unbounded regions if 3 ro so that for r > ro then | u | <—
B

and

u| A .
—{<—; comes true, where A is a constant.
x| r

5. Consequences of Green identities

Let £ < R" be a bounded set, with a piecewise C* (smooth) boundary surface 62=S. Let ry and rp be
the position vectors of the M and PeX points, r,, =r, —r, and r,, =|r,,|is the length of MP

vector, onis surface of the n dimensional unit sphere. If u e C Z(E), then:

u(M) o 2)0 jLA;PZ - (P)ajp(r]:; ﬂd jAu —dv, VMeZcR",

n>3 9)

u(M)= Lj{ln 1 alp) —u(P)i(ln Lﬂdap —i ! Au(P)In L, yMescre. (10)

2r| Fyp On on,\ ryp Typ

If ueC'(Z) is harmonic on X (i.e. Au(P)=0,vP X c R"), then:
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1| 1 ou(P) o[ 1
M)=— || =5 ——-ulP)—| - "
) 47[![;’,&,} on o )anp [Vchpz HJJP TMEEERLn =S w
u(M)=LJ- mL@_u(}))i L op, VMeZcR?, (12)
drgl ryp On on, Tvp

Observation
1. Relation (9) stands for u € C*(£)C'(Z) too.

6. Green’s theorem in complex form

Let f=f(z,z) be a complex valued function of a complex variable, z=x+iy,z=x—iy ,

fe C‘(S uF)where C denotes the set of complex numbers, T is the boundary of the S region, then
(Kwok 1989):

1 f(z,2)dz = 2i jsj %dxdy . (13)

1.1.2 Theorems regarding to potential theory
7. Theorem

Let £ < R" be a bounded region, let ry and rp be the position vectors of the M, PeX points,

Pup =t —Fy,and 7 = |"Mp| is the length of the MP vector and let C be a constant value.

If o< n, then the

erP

C v, YMes (14)

improper integral exists (is convergent). If o > n, the improper integral (14) is not convergent.

Observation
1. Incase of a < n for YMeZX points the I(M) is uniformly convergent.
2. It can be show that in points MeX, where (M) is uniformly convergent, the I is continuous.

. C . . .
In this way 1(M )= J.Tdv,, exists and is continuous for every o < n.

> "MP
3. Forn=3 I m'—dvp and I m' —va integrals exist and are continuous
for VMeR®.
8. Theorem
Let X~ — R" be a bounded set, let ry and rp be the position vectors of the M, PeX points, r,, =1, —r),
and r,,, = |r,,» | is the length of the 7P vector.
If pis an integrable function on X and p = 0 on the exterior of X, then:
I(M)= jp( )va,MEZ O<a<n (15)

Yymp

the volume potential is an improper integral, having singularity in P=M and fulfils the following
properties:
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1. For YMeZX the I(M) exists (is convergent).
. In the exterior of X the function I is infinitely differentiable ( 7eC” (R" )) in addition the
dlfferentlal of | can be obtained simply by applying the differential operator behind the integral:

a\ﬂ\ 1
D I(M dv,, VM eR*\T, 16
Ip oxoxt: . oxlr ( v J : < (16)

Typ

where B=(B,, By..... 3, )} | Bl=B+B+..+B, .

3. The behaviour of derivatives in the infinite can be characterized by:
Df’f](M):o(rﬁﬂ‘) if 1y —o0. (17)

4. If pis bounded on X, then 7 e CP( ) where p is the largest integer with the property that
a+ p<n. In this case the computation of derivatives can perform by applying the differential
operator behind the integral.

Observation
The properties of the | integral can given in the following form:

j/’ ng,MeS 0<a<n-l, (18)
s Tip

IZ(M)z_[pT)le, MeL, 0 < a<n-2, (19)
L MP

where S < R" is a bounded region and a piecewise smooth (C?) surface, L is a segment in R", ry
and rp are the position vectors of the M, P points, r,,, = r, —r,,, and r,,=|r,,,| is the length of

the MP vector.

If pis a bounded function on S and L, then the Iy and I, improper integrals have the following
properties:

1. For YMeS 11(M) exists (is convergent).

2. For YMelL 1x(M) exists (is convergent).
3. In the exterior of S the function I; is infinitely differentiable (IzeC”(R”\S)) in addition the

differential of I, can be obtained simply by applying the differential operator behind the
integral.

4. In the exterior of L the function I, is infinitely differentiable (7, eC°°( ! \L)), in addition the

differential of I, can be obtained simply by applying the differential operator behind the
integral.

5.Thel, eC°°( " \L), where p is the largest integer with the property that o + p +1 <n.

9. Theorem — Properties of harmonic functions

1. Let S be a closed, piecewise C* (smooth) surface in G region, S — X and let n be the normal vector
of this surface. If ueC?(X) is harmonic on G (Au(M)=0,YMeZX) then:

j —dd 0. (20)

Geomatikai Kozlemények XIX, 2016



1.1.2 THEOREMS REGARDING TO POTENTIAL THEORY 19

2. If X is a bounded region and ueCz(Z)mCI(E) is not a constant function, u is harmonic on X

(Au(M)=0,YMeX), then the extreme values of u in > region are not realized in X, in other words:

min u(P)<u(M)<22%>Z< u(P), YMezx. (21)

3. If 2 is a bounded region, min u(P)<u(M)<g1ayzc u(P) is not a constant function, u is harmonic on

R"Y and u(0)= lim u(M)=0, then holds the maximum principle:

I

|u MX<maxu(P), VMeR"\X. (22)

Pedx

10. Theorem - Volume potential

Let = < R® be a bounded region, with a piecewise smooth boundary 6% (consisting of a finite number
of C!surface elements). Let ry and rp be position vectors of the M(x,y,z) eR® and P(& 7,£) X points,

Fup =1p — 1y =(E—x,n—y,6—z), ryp=|ry, | is the length of the MP vector.
If pis integrable and bounded on X, and in the exterior of X it holds that o = 0, then the

)= ([ 2, @3)

volume potential is defined in all space, MeR® and one gets:

1. The first derivatives of V are uniformly convergent then in consequence are continuous functions
in the whole space (Ve C*(R%). In addition the different partial derivatives of V can be obtained simply
by applying the adequate partial differential operator behind the integral:

)=I£jp(Pa( Jva I
AP fo~ (] ﬂMyva,VMeRe_ on
—VMHy P L[ e

Rewriting (24) in vectorial form we have:

ov v o
v, V(M)= (E@EJ m dv,,,VMeR3

va , VMeRS,

2. Outside the area X the function V is infinitely differentiable, i.e, VeC‘”(R 2 ) In addition the
differential of V can be obtained simply by applying the differential operator behind the integral

a\/’\ 1
DﬂV(M):jy p(P ax/"ayf"zazﬂz( Jdvp, VMeR*Y , (25)

where B=(B., s B, ) | BI=Bi+Bot P,

3. The behaviour of derivatives in the infinite can be characterized by:

D’ V(M)zO(rAf‘ﬁ‘ ) if 1y —>o0, (26)
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4. For = (2,2,2) based on 2 we can conclude, that V is harmonic in the exterior of region X. On
R\ T the Laplace equation holds:

m )[—rMP+3(§ x) | ~rip +3(0 - ) +_VA%1P+3(g_Z)2Jva =0, VMeR*|E

5 5
Tmp Tmp "mp

(27)

5.If peC(f)mC‘ (2) then exists the second partial derivatives of V on T (Ve C?(Z)) and the following
holds:

AV(M)=—4m(M),YMeX (Poisson equation). (28)

6. Let S be a closed and piecewise smooth surface outside the = region (S cR*\X ) and let n be
normal vector of the S surface, then:

j —dd 0. (29)

7. Based on the maximum principle of harmonic functions we have:
|u(M)|sI;1%>Z< u(P), VM eR"S . (30)

8. Let S be a closed and piecewise smooth surface outside the X region (S < R* X ), let n be normal
vector of the S surface and let @ be the region enclosed by the S surface, then for every M points of

we have:
1 oV
el

i.e. the volume integral can be expressed as sum of a simple-layer and a double-layer potential.
If S is a potential surface (V(P)=V, = const, VP e S ) and wis the region enclosed by the S surface,

n is the normal vector of the S surface, then
L ﬂLa_V
<] ryp On

i.e. the volume integral can be expressed as sum of a simple-layer potential with respect to the
potential surface.

P onp\ yp

P)i(iﬂda,, VMeo, (31)

do,, VMeo,, (32)

P

Observations

1. Let p be bounded and continuous almost everywhere (it is only discontinuous on a set of
zero measure, this means that if we choose a random point on the function, the probability
that it is continuous is exactly 1, in addition these conditions are sufficient for Riemann
integrability of p), then the volume potential and its first order partial derivatives exist and
are continuous in all space. As consequence of this statement is that the potential and its
derivatives are continuous even in those points where for example p has a jump. In addition
despite the boundary of X consisting of points where the function p has a discontinuity (o =0
in the exterior of =, p= 0 in X). The volume potential and its first order partial derivatives
exist and are continuous on the boundary of X.

2. The second order partial derivatives of volume potential are not defined in those points where
p has a discontinuity, e.g., on the boundary of X.

3. V(wo)=1lim ¥(M)=0.

Fy—®
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4. The potential of a sphere with centre in origin, radius Roand constant densityp = p:

3
DR s R,
v(M)= 3er .
2m,R; — 7?0 rl if r, <R,

5. In case of two dimensions :
)= [] ),

If pe C( 5), then V(M) eCY(R?) is harmonic on R2 \S .
If p < C'(5), then V(M)eC¥(R?).

11. Theorem — Simple-layer potential

Let ¥ < R®be a region and let 8 be a bounded and piecewise smooth two side surface. Let be
M(x, y, Z)eR®and P(&n,Q €. r,p =1, —r,, =(& = x,77— v, — z) and rvp = |rve| is the length of the

MP vector.
If 2is continuous on the boundary of G (ue C(0%)), then the simple layer potential:

o) = [[ 4Py (33)

o MP

is defined in all space MeR? and has the following properties:
1. r0ec(r?).
2. V(O)(OO)IO.
3. V(O)ecw(R oz ) is harmonic in all space excepting the boundary of X, i.e.,
AV O(M)=0,v MeR*\0%.
4. If 0%, the boundary of the T region, is a bounded, closed, and a C? surface, then the directional
derivatives of the simple-layer potential along the exterior normal to the 0% surface are defined on 0%
surface. Accordingly we can define the following function:

ov©

on

M)=[[u(P ( op=[[u(P COSV’MPda VYMeds, (34)

oz

:02—R

oz

where wup is the angle between the exterior normal to the 0% surface at point P and vector MP , ie.,
Wupr = (ryp-n,) . The function defined in (34) is continous on 6% and the following relations hold:

(0) (0) (0)
[W }<Mo>= i 2 00)=2m001,)+ 2 o1, Vo, e 5.

on MMy Ony, ony,

(0) (0) (0)
(aV J (M,)= lim a4 (M)=—2mu(M,)+ o (M), VM, €% . (35)

on ) MMy On,, n,,.

5. The formula of the simple-layer potential for two variables:
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L, (36)

V)= [ u(P)in

T Ymp
in this case I is a planar curve.
6. According to (35) we have:

(620)J (v 0)"(620)]_(1‘4 o)=4mu (M), VM, edx.

Observation
1.The potential of the surface Se, of the homogeneous sphere (simple-layer potential) with centre

in the origin of the coordinate system, with constant density (M )=v, and radius Rois:

47[R§V0=Mifr SR
M =70

yO)={ ™ ;;[4 , where M = 47Rq 1 is the mass distributed on the surface
4Ry, =— if r, <R,
RO

of the sphere.

2.1f ueC(r), then the simple-layer potential for two variables, i.e., in R?, belongs to the class of
function C(R?) and is harmonic except in I".

12. Theorem - Double-layer potential

Let = = R3be aregion, let 8% be a bounded and piecewise smooth two side surface. Let be M(x,y,z) eR®

and P(&n,8)€X. rue=|rmp| is the length of the MP vector and let np be the directional derivatives of
simple-layer potential along the exterior normal to the 0% surface at point P. If v is continuous
function on the boundary of G (v e C(8%)), then the double-layer potential

V(')(M):Hv (P)%[%j do, :Hv (P)% do, (37)
o P\ Tup B P
exists in all space (MeR®) and has the following properties:
1. ¥(e0)=0.
2. V@ is infinitely derivable and is harmonic in all space without the boundary of =

vV € c®(R3\0%), AV V(M )=0,v MeR*5S .
3. If 6% the boundary of X is bounded, closed and a C?surface, then ¥ <‘)eC(6 z ) and

14 (‘)eC(R3 102 ) Approaching % points from the exterior or interior of the region X, we get the
limits 7" and 7 for ) which are fulfilling the following relations:

yW(a,)= i O =220 (M, )+ V(M ), VM, € 55 .

MeZ

vOM,)= fim VO () =-2m (M) + V{01, ) VM, <05 (38)
MeRT

4. The double-layer potential for two variables, i.e., in R?, is expressed as:
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r(u0)= [ (P) 2 [m LJ dip = [ ()i te ] Coygomr) (39)
T Onp\ nyp T Tvp

here T is a plane curve.

Observation

1. From (38) we can get:

V(l)(MO )—Vfl)(M0)=4ﬂ>u (Mo ): VM, edx.

+

In case of a constant v = v, density the value of double-layer potential in point M is equal
with the solid* angle w,, (from which the 0% surface can be visible from the point M):

vOM)=v, [[ Mdapzvoﬂ)ﬁ(M), VMeR' 165 . (40)
oz MP

Let v =v, be the constant density and let 6 be a bounded, closed and two side C?surface,
then:
—4av, if M elnt(2)
VOM)={-22v, if Meds . (41)
0 if MeExt(2)

This means that the constant density induce a constant potential function on the three disjoint

regions: 0%, Ext(X), Int(X). Let these values be V((Q VE('X)t(Z) , Vlg't)(z) respectively. Using (41)
we can get:
2y )= v 2, “2)
Vlgt)(z) = Va(;) —27v,
The expressions of (41) and (42) in R? are:
—2mv, if M ent(Z) VE(Q(Z) - Va(lz) +v,
V(')(M): -, iftMedz ., (43) (1) . (44)

=V —m
0 if M cExt(2) mifz) = oz o

In R? holds a relation similar to (38) with = instead of 2.

In RZ space in case of a constant v = v, density the value of the double-layer potential in a
point M is equal with the angle described by the MP segment while the point P runs over the
T curve:

O (M)= IV(P)MQ’ZP =PMP,,

T Pyp

where P1 and P are the start and end points of the I" arc.

! The solid angle o subtended by a surface 0% is defined as the surface area of a unit sphere centered at the observation point

M covered by the surface projection onto the sphere along the line connecting 6Z with M
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1.2 The analytical formulas of gravitational potential and its derivatives of the homogeneous
polyhedron volume element

The notation in this section follows the notation presented by Pohanka (1988), Holstein and Ketteridge
(1996), Holstein et al. (1999) and Holstein (2002a, 2002b). The vector analysis tools were used in the
deduction of formulas instead of other methods like the coordinate geometry in order to avoid the
coordinate transformations.

The computations were performed on an Hp Unix 11.i system, A-Class 1440 MHz PA 8500 CPU
processor and the programs were written in the HP Fortran programming language.

In the Section 1.2.1 is presented a review of literature regarding to the gravitational potential of a
polyhedron and its derivatives. The object of Section 1.2.2 is to give the domain of definition of these
functions based on theorems of potential theory. The notation used in deduction of analytical formulas
of the gravitational potential and its derivatives is presented in Section 1.2.3.

The analytical formulas are deduced converting the volume integral to surface integrals
(divergence theorem) and those to line integrals (Stokes or Gauss-Ostrogradsky theorem). The
formally different analytical formulas found in the literature arise from the different strategies for the
reduction of the initial 3D integral to 1D integrals. The Section 1.2.4 consists of the general solution
of the differential equation needed for the Gauss-Ostrogradsky theorem. The different kind of
particular solutions of the differential equation can provide different solutions presented e.g., by
Pohanka (1988), Gotze and Lahmeyer (1988), Petrovi¢ (1996). Holstein (2002a) introduced the (Ci;,
Q;;) constant system which will be presented in this section. Guptasarma and Singh (1999) and Singh
and Guptasarma (2001) derived analytical formulas up to first derivatives of gravitational potential,
which were completed in this work with the analytical formulas of second order derivatives. Werner
and Scheeres (1997) discussed in detail the geometrical interpretation of the constant ;. Holstein
(2002a, 2002b) introduces the vector invariant quantities which allows to describe the gravitational
potential and its first and second derivatives in terms of these quantities. In Section 1.2.6 the
simplification of analytical formulas of gravitational potential and its first and second derivatives are
given taken into account the reductions due to common edges based on the the work of Werner and
Scheeres (1997). In the Section 1.2.7 a different way of deduction of the analytical formulas of first
derivatives of potential is presented. Holstein (2002b) deduces two different analytical expressions of
first derivatives of gravitational potential using the vector invariants. In this section the formulas of
first derivatives of gravitational potential were deduced in some other way such as by using a proper
local coordinate system, or based on geometrical interpretation, or using dyads. In the Section 1.2.8
the analytical expression of second order derivatives of potential is presented. Section 1.2.9 deals with
the different analytical formulas of constants (Cjj, €) found in the literature, with the domain of
definition of these constants and the domain of stability of analytical expression of particular
constants. In Section 1.2.10 the numerical instability of constants far from the source is investigated
that increases with the distance from the target, while the anomaly decreases. Similarly the numerical
instability near to the target is presented too. A limited range of target distances beyond which the
calculations are dominated by rounding error are determined for the mentioned two extreme positions
of the computation point regarding the gravitational source. Holstein and Ketteridge (1996) and
Holstein et al. (1999) describe the magnitude of numerical errors of analytical formulas of first
derivatives of gravitational potential by an exponential function of two parameters, one the distance
of the gravitational source from observation point and the second the source dimension. This relation
was proved by the authors theoretically and confirmed by model computation. The model computation
given by Holstein et al. (1999) was reproduced with a self-written program in Fortran-Programming
languages. We repeat the model computation considering the exponent of above mentioned function
as a parameter. In this way we can estimate the exponent parameter belonging to the potential and
belonging to the second derivatives of potential. These exponential relations with the estimated
exponent can provide the limit of the distance of the observation point and the arbitrary gravitational
source for which the computational error (computational error = theoretical value — computed value)
is beyond an a priori chosen p percent. In addition we have proved that the numerical error committed
in the gravity field related quantities with the realistic ALCAPA density model (Benedek and Papp
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2009) is below 1%. Pohanka (1988) investigated the error induced by small ¢ quantities introduced to
avoid the singularities of analytical expression for the first derivatives of potential. A similar
investigation to estimate the error due to the ¢ quantity in the analytical formulas of potential and its
second derivatives of its are presented in Section 1.2.11. We investigated numerically the value of ¢
for which the committed numerical error will be the same order of magnitude as the . We compare
the computational time of different analytical expressions of C;; and Q;;. In Section 1.2.12 we describe
the algorithm for computation of the potential and its first and second derivatives in case of the special
polyhedron with five faces. Furthermore in Section 1.2.12 we present our algorithm for determination
of face positive orientation in case of general polyhedron (convex or concave polyhedron with an
arbitrary number of faces) and the face normal vector consistent with this orientation.

1.2.1 Overview of the literature

Prisms are mainly used for local modelling if flat earth approximation based on planar geodetic
coordinates is allowed. Nagy et al. (2000) gave an extended reference of the earliest applications of
prisms in gravity field modelling. The paper of Zach (1811) can be mentioned as the earliest
publication in this area. Beyond rectangular prisms the polyhedrons or tesseroids can also be used to
discretize the density distribution of 3D models to describe adequately the geological structures. The
polyhedron is a relatively new volume element (Okabe 1979, Cady 1980). Its application improves
the geometrical description of the bounding surfaces (density interfaces) compared to flat topped
rectangular prisms because it is able to provide continuity where it is reasonable. The spatial resolution
of the model can be arbitrarily synchronized to the resolution of the available geometrical data (points
of the interfaces) and physical parameters (e.g. mass density distribution). Furthermore, the effect of
the Earth's curvature can easily be taken into account in the computations (Benedek and Papp 2009),
because the polyhedral geometry allows the description of any density model not only in a local
(planar) but in a global geodetic coordinate system (e.g. WGS84) too. Analytical expressions for the
gravitational field of a polyhedral body with either linearly or non-linearly varying density are also
available (Garcia-Abdealem, 1992, 2005, Pohanka 1998, Hansen 1999, Holstein 2003, Zhou 2009).
This improvement enables the modelling of the continuous density variation inside the volume
element if geology justifies its existence.

The modelling of the gravitational field of the asteroid 4769 Castalia is an example of the
application of the polyhedron volume element in space geodesy. The surface of asteroid was described
by a polyhedral surface with 3300 faces (Werner and Scheeres 1997). Hikida and Wieczorek (2007)
describe the crust-mantle boundary by polyhedron faces and the crust-mantle boundary is determined
by inversion.

Although very complex modeller systems equipped by graphical user interface, like IGMAS
(Gotze and Lahmeyer 1988) also exist and are available for the research community, basic research
usually needs high flexibility in program coding to defer to the continuously varying requirements
and aims (http://www.gravity.uni-kiel.de/igmas/). Mahatsente et al. (1999), Kuder (2002), Ebbing and
Gotze (2001) present applications of this program.

In the direct (forward) modelling in general the gravitational potential and its derivatives generated
by certain homogeneous volume elements (prism, polyhedron, tesseroid etc) are computed
analytically or numerically (expanding the gravitational potential into a harmonic series). The latter
one can be realised by spherical harmonics expansion of the gravitational potential generated by the
volume element (MacMillan 1958) which is an approximation of exact analytical formula due to the
fact that only a finite number of terms are taken into account in the expansion. The error of
approximation increases and its convergence is slow near the boundary of the convergence region (the
exterior of the sphere which includes the volume element). The series is divergent outside the
convergence region and numerically unstable, i.e. any mass rearrangement can induce the divergence
of the series. Another way to approximate the gravitational potential generated by irregular volume
elements is the substitution of a continous mass distribution with discrete point masses. The advantage
of the point masses approximation is the convergence of gravitational potential with increasing the
number of point masses, the drawback is the very slow convergence with increasing the computation
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point distance from the source. Furthermore in the vicinity of the source the point mass approximation
of the gravitational field suffers from spectral distortion (Papp and Wang 1996).

Similar to the prism the gravitational potential and its derivatives generated by a polyhedron can
be described analytically. From Theorem 9 of potential theory discussed in Section 1.1.1 we can
deduce that the potential and its first derivatives are continuous in all space (in R®). Therefore the
analytical formulas of these functions can be extended continuously to the whole space (Nagy et al.
2000). In case of the second derivatives of potential the domain of discontinuity is the polyhedron
surface. In these points the second derivatives have a discontinuity of the second kind.

In the literature we can find several formally different analytical expressions published in papers
by Paul (1974), Barnett (1976), Okabe (1979), Gotze and Lahmeyer (1988), Pohanka (1988), Kwok
(19914, 1991b), Ivan (1996), Holstein and Ketteridge (1996), Petrovi¢ (1996), Tsoulis and Petrovié
(2001), Werner and Scheeres (1997), Holstein et al. (1999), Holstein (2002a, 2002b), Guptasarma and
Singh (1999), Singh and Guptasarma (2001), Furness (2000). The equivalence of the different
analytical expressions of gravitational potential and its derivatives given in these publications will be
discussed in the following sections. All the analytical formulas are obtained transforming the volume
integral to line integrals. This can be realised in two steps, first the volume integral is transformed to
a surface integral using the Gauss-Ostrogradsky theorem (Theorem 1 in Section 1.1.1) excepting
Furness (1994), where this transformation is realised applying the Green theorem (Theorem 3). Then
the surface integral is calculated directly (Paul 1974, Barnett 1976) or is transformed to line integrals
applying the Stokes (Theorem 2) or the Gauss-Ostrogradsky formula (Theorem 1 for n = 2). Werner
and Scheeres (1997) present the deduction of analytical formulas of second order of derivatives of
gravitational potential, Holstein (2002a, 2002b) gave these formulas using the concept of vector
invariant by means of which the analytical formulas become a linear combination of them. This kind
of expression is very advantageous from a programming point of view. Formally the different
analytical formulas for gravitational potential and its derivatives given in the literature in fact are the
primitive function of a volume integral, because these analytical expressions are identical aside from
a constant on their common domain of definition. These identities will be demonstrated during this
work. In the mentioned publications the analytical expressions of gravitational potential and its
derivatives are deduced for a general polyhedron volume element. Paul (1974) and Barnett (1976)
gave solutions valid for a special polyhedron with triangular faces.

From a programing point of view the simplification of analytical formulas means implementation
of vector analysis instead of the application of coordinate geometry. Furthermore the analytical
formulas written in vectorial form are more simple (Go6tze and Lahmayer 1988, Pohanka 1988,
Petrovi¢ 1996, Tsoulis and Petrovi¢ 2001, Werner and Scheeres 1997, Holstein et al. 1999, Holstein
2002a,b, Guptasarma and Singh 1999, Singh and Guptasarma 2001, Furness 2000). Kwok (1991a,
1991b) use the complex analysis tools to deduce the formulas. The authors not always give the
maximal domain of definition concerning to the analytical expression of gravity related quantities.
Paul (1974) and Gotze and Lahmeyer (1988) gave the exterior domain of polyhedron as domain of
definition of first derivatives of potential. Barnett (1976) applied a larger domain of definition as the
union of exterior and interior domain of polyhedron. Okabe (1979) gave the maximal feasible domain
of definition for the first and second derivatives of gravitational potential generated by a polyhedron.
In case of first derivatives the maximal domain is the whole space, while in case of second derivatives
as the maximal feasible domain the union of interior and exterior of polyhedron is given.

The error analysis of analytical formulas of gravitational potential and its first derivatives are
investigated too (Holstein and Ketteridge 1996, Holstein et al. 1999). The relation between the rate
of numerical error and the geometrical parameters defining the position of computation point relative
to the polyhedron volume element is deduced.

The calculation of the closed formulae given for the gravitational potential and its higher order
derivatives, however, needs more runtime than that of the rectangular prism computations. But the
new computational feasibility (parallel programing, largest memory capacity) allows the applicability
in 3D gravitational modelling in regional and even in global scale of polyhedron
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1.2.2 The analytical properties of gravitational potential and its derivatives based on theorems
of potential theory

In general in the gravitational modelling the computation of gravity field parameters is limited to the
exterior of mass sources (e.g. the exterior or the surface of Earth) which means the limitation of
analytical expressions of gravitational potential or its derivatives on the exterior domain of volume
elements. But certain investigations (for example the plumbline modelling) make it necessary to
extend the computational domain to the interior of the masses. Therefore is important to give the
maximal feasible domain of definition derived from the potential theory where the gravitational
potential and its derivatives are defined. In case of existence of analytical formulas describing the
gravity field related quantities generated by a source model (e.g. prism, polyhedron) we have to
distinguish the domain of definition of the analytical expression which is a subset of the domain of
definition deduced from potential theory of the gravitational functions( Nagy et al. 2000). Is important
to compare these two sets and investigate the limits of the analytical expressions in points which are
not belonging to the domain of definition of analytical expression but they are point of domain derived
from potential theory. In the following we will discuss in detail the domain of definition of
gravitational potential and its derivatives generated by a polyhedron based on potential theory.

The gravitational potential generated by a homogeneous polyhedron volume element

(p=p,, YPeZR?) is described by the volume integral given in Theorem 10:
1
UM )=G[[[ Lodv,=Gp, [[[—av,, (45)
s Tup s Tup

where U(M) is the gravitational potential in the observation point M, G is the gravitational constant,
2 (2 < R?) denotes the body of the polyhedron, r,,, =r, —r,,, r,, =|r,,| s the vector and its norm

determined by the an arbitrary point of polyhedron P and the observation point M.
Since the p=p, constant density function fulfils the peC(i)mCl(Z) condition, by right of

Theorem 10 the following statements are valid:
1. U and its partial derivatives are continuous functions in all space, namely:

UeC'(R).

From this arise the next important issue: The gravitational force between the homogeneous
polyhedron mass and the unit mass in M is given by the formula:

F(r, )=V, UM )=Gp, [[[V,, (Lj dv,=—Gp[[[4dv,, MeR? (46)
b Tup Y Twmp

and is defined and continuous in the whole space.
2. U is infinitely differentiable on exterior of X:

UeCc*(R1T). (47)
3. U is harmonic function on exterior of X:
AU(M)=0 (Laplace equation). (48)
4. The second order partial derivatives of U are continuous in interior of X and it holds:
AU(M )=—42p,G , VMeZX (Poisson equation). (49)
5 Ulwo)= lim UM)=0. (50)

v —>0
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6. [U(M)<maxU(P), vM e R*\X. (51)
Peox

1.2.3 The scalar and vectorial quantities assigned to the polyhedron

According to the polyhedron definition its surface can be given as the union of polygonal planes.
Since any non-convex polyhedron can be split into a finite number of convex polyhedrons without
limiting generality all the following statements are demonstrated only for the convex case. In the case
of convex polyhedron denoted by X the polygonal faces are also convex sets, so:

322&25} ,
i=l,n
where S; is the i" convex polygonal face, n is the number of polyhedron faces. Let I(i) be the number
of edges and let Ljj be one of the edges of S;, i.e:
0S,= U L

EVoRs

Let j be the index of an edge of the i" face (Fig. 2), let M; be the projection of M point onto the S; face
(M, =projs M) and let M;; be the projection of M; onto the Ljj edge (M =pr0jL”M ) (Fig. 3). LetP € X

be an arbitrary point of polyhedron. In the following we list the vector and scalar quantities used in
this work and its geometrical interpretation:

ve, Mvip is the vector and its norm determined by the an arbitrary point of polyhedron P and
the observation point M

aij is the position of vector that represents the position of the j*" vertex of i"" polygonal
face in relation to the origin of coordinate system

N is the normal vector of S; polygonal face

lj, 44 is the directed line segment Lj; and the unit vector of this. Directions of I;; and ;

vectors are defined by the positive direction of the boundary of polygonal face &Si.
If you walk in the positive direction around 6S; with your head pointing in the
direction of nj, the surface will always be on your left

(245, i, W) is the right-handed orthonormal basis assigned to the Lij segment, so that
V=M XN,

r1ij, Faij are the vectors determined by the vertices of segment Ljj and the observation point
M

Foij, 7;; is the vector determined by the Mj and the M points and its vector norm

Supr Sup is the vector determined by an arbitrary point of polyhedron PeS; and the
M =proj; M point and its vector norm

hi is the signed distance of M point from the S; face, i.e %, = proj,, ,,, Where PeS; is
an arbitrary point. The hjis negative, if M is situated in the half-space defined by S;
plane and determined by the pointing direction of S; surface normal n;

hij is the signed distance of M; pointed to the L;j segment, i.e /2 ; = proj, r,,, Where

PeSiis an arbitrary point. The hj; is positive if M; is situated in the half-pane defined
by the L;; segment which includes the S; polygonal face, otherwise hj; is negative. h;
is independent from the PLj; point

lij is the length of the L;; segment
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| is the signed distance of PL;; point from the M;; point

L1ij, L2ij are the projection (signed distance) of ryj and ra;; vectors to the ljj vector, i.e
l.=vet ,ml,.j and Ly, =vet rz”ll.j

Awiij the triangular faces enclosed by the projection of ry, riij vectors to the S; plane, where
k=02, k+l

Lj

M

Fig. 2 The scheme of S;polygonal face and 8S; boundary polygonal line. M is an arbitrary point in the space, M;is its
projection on the S; plane, P is an arbitrary point belonging to the polygonal face

M

Fig. 3 Represents the scalar and vectorial quantities belonging to the L;; segment. (g, ni, ;) is a right-handed orthonormal
system. ry;j and r; are vectors determined by the ij vertices and the M point. Aoij, Aozij, Aszij denotes successively the
MiMijAij+1, MiMjAji1 and MiAjAjj.. triangular faces
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In the algorithm developed by myself computing the polyhedron gravitational field parameters the
polyhedron is defined by the coordinates of vertices. For each face is given the list of vertices which
define the orientation of the polygonal line. In the following the face i is considered fixed. In case of
convex polyhedron all faces are convex polygons so the normal vector of vectorial product of any
two consecutive vertex vectors (e.9. 13 = a’, —a$.1% = a’ —a? , Where the 0 upper index indicates

the initial orientation of the closed polygonal line) gives a vector perpendicular to the S; plane
additionally these three vectors form an right-handed system. In the following we need the external
normal vector of face i, so it is necessary to check the previously determined direction and change it
if necessary. As a first step we choose arbitrarily an inner point of the polyhedron, let the geometric
centre (centroid) be this point. Using the convexity condition of polyhedron, the decision of
correctness of direction of vectorial product defined by the initial orientation of polygonal line can be
reduced to verifying if this direction points in the opposite half-space limited by S;and the centroid.
If the direction points in the half-space limited by S; the vectorial product gives the inner normal
vector, in this case we have to change the initial orientation of oS; polygonal line and otherwise the
initial orientation will remain unchanged. We repeat for every face the same procedure, which in
mathematical formulation means:

x y z 1
f(an +1 Xliz)'f(xGaJ’G’ZG)< 0, where e, y,2)= Yoo YaoE
Xp Vi Znp 1

1

X3 Vi Zi

, Xij, Vii, Zij are the components

of the ajj vector, j=1,2,3 or any other three arbitrary points of the i face, (x,, ..z, )= ZW n,
=)+
where n is the number of faces, I(i) is the number of edges of it face, i, j denotes consecutively the
face and the vertex indices belonging to a certain face. If the inequality is fulfilled the initial
orientation of S; is retained, so the final vertices ordering (positive direction) and the external normal

of Siare:a,=a;, I,=1I;, j=11()) and n, :%’2'. Otherwise a,=a; ., ;, j=2.1(i), I,=—1I; and
il i2
nxr 1<, . .
= |10 l°|_ ll ll | (Fig. 4). In case of concave polygonal faces the vectorial product can be
X fiRale?)

J=2 J=2

1(i)-
determined using Pohanka (1988) formula: n,=2(aij—a“)><(alj+l —a,.l)/

1(i)-1
Z(“ij —a; )>< ("z:i+1 —a) -

Supposing a bounded model, the concave polyhedron can be inscribed in the [X ., Xmad X Wimint Yimaxd
X [Zrin Zmaxd PFiSM, where x, . =max {xP|P(xP,yP,zP)eQ }and X i =N {xP|P(xP,yP,zP)eQ}

denotes the maximum and the minimum of x coordinates of polyhedron vertices. Similarly we define
the Yoo Yimine Zimaxr Zmin VaIUES. Accordingly T(X .. Ve Zmax) Will belong to the exterior domain of the
polyhedron. Straight lines are taken extending from this point indefinitely in directions
determined by each face inner point e.g. by its centroid in case of convex face. The next steps
are to marking of normal vector belonging to polyhedron faces:

1. One arbitrary face and its arbitrary inner point P (e.g. the face geometric centre in case of
convex face) is fixed.

2. We determine the number of intersection T; of the half-line belonging to the fixed face with
the other faces of the polyhedron (Fig.4).

3. Once the distance is determined for all these points from the T point, then the T; points are ordered
on the basis of their respective distances with the T point, the point having the smallest distance is
ranked first. Using the fact that the Ti.1 Ti segments alternate from outside to inside in successive
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set |TT,| is situated in the exterior domain of polyhedron, |T1T| is situated in the inner domain of
polyhedron, | T,Ts| is situated in the exterior domain of polyhedron and so on (Fig.4).

4. After the ranking step the rank order of point P is checked. In case of even order the direction of
the normal vector of fixed face points in opposite direction with semi-space determined by the fixed
face and the T point, otherwise the normal vector points in this semi-space. In other words we
determine the normal vector pointing in the exterior domain of polyhedron and the positive orientation
for each of the faces.

a) b)
Fig. 4 Determination of the normal vector of S; face pointing into the exterior domain of polyhedron in case of a) convex and
b) concave body

The expression of vector quantities belonging to the Fig. 2 and Fig. 3 are listed below:

Mvp = Tp =T Tap =1 73

ly=a;.,—a;, 1; :|"i/+l _”z:/| '
a.... —d::
1, <1 ij+l ij
n =12 u;= v V=X,
o<t laga ey T T
iy <15 i+l

==V By =50y

i =|r]1jX”1j| e =rypen, =h;"n,=r,;n, hzj/:rlzj'v:j , PesS;,

Ly =hy iy by =ry =l +1;,

where rwp, rojj, ljj are positive scalar quantities, the sign of h;, hyj, luj, lij quantities depends on the
position of computation point M, on the S; plane and on the L;; edge.

1.2.4 Review of different demonstration techniques of the analytical formulas of gravitational
potential generated by a polyhedron volume element

The gravitational potential in the observation point M generated by a polyhedron volume element =
is described by a volume integral. The analytical expression of volume integral can be obtained
transforming the volume integral to line integrals. This can be realised in two steps, first the volume
integral is transformed into a surface integral. We start with the formula:

U(M)=Gp, [[[Ldv, =20 [[['v, Dy, (52
T Tur 25 Tmp

Following we used the relations:
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8I’MP:§—X aVMP:U_y arMP:é/_Z and

o& Yyup l on Yyup og Yyup
v, .M:i(f—x}i{n—y}i[é—z}i,
" Fyp OS5\ Typ on\ ryp oG\ ryp Typ

where M(x,y,z) is the observation point, P(,7,¢)eX is an arbitrary point of polyhedron volume
element.

If MeEXtX is situated in the exterior domain of polyhedron body X, then w js defined on T and
Typ
fulfils the condition of the Gauss-Ostrogradsky theorem (Theorem 1), so we have:

If MeIntZ is situated in the interior domain of =, then 22 is not defined in the point P=M, thus it
"mp
does not fulfill the condition of Gauss-Ostrogradsky theorem in £ domain. The theorem can be applied
on a proper subset =, =3\ Z(M, &), where Z(M,¢) is an 3-dimensional open ball of radius ¢ and
center M:
I_”Vr,, Tup v, J'Iﬂd
s, Tvp

[ MP

If the radius of ball gets close to zero, the following relations are valid:

M IV, <l [ <l [y = [ T (o[

08(M.c)Tmp o Tup
The limit of second term is zero. This can be seen as follow:
Lur . g, jj e yde, ﬂ lur Tt o, = ([do, =47 -0 if &0,
GE(M,g)rMP 0Z(M.¢) VMP 07(Me) rMP VMP 07(Me)
Using this result we have:
r,
I, e, = [,
for every MeR3 point. Thus we can write:
Gp r Gp r Gp r Gp r
U(M OU V MP y 0”’ MP d U.U MP_ OZ_U MP . dUP
i=l s Tvp
G
p° Zh jj —do, , YMeR?, (54)

MP

Paul (1974) calculates the surface integrals on triangular faces analitically using a proper coordinate
transformation for every triangular face. For every A, A,,A, triangle we define the (x/,y/,z/) right-
handed coordinate system with origin in Az and the axis defined as x;=4 ,, 4 ,,, yi 1 4,4, and

c(4,4,4,,), z, Lx and z/ L y! . The formulas (Paul, 1974) in these local coordinate systems

described in are disadvantageous from programming point of view. Furthermore in case of a general
polyhedron with arbitrary polygonal faces the calculation of multiple integrals on a general polygonal
face is awkwardish, therefore it is more convenient to convert the double integrals to line integrals
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using Gauss-Ostrogradsky or Stokes formula. The requirement for applying the Stokes theorem is to
find for every S; face a f;(rp) vector-vector function achieving:

v, x f,(r, ), =rot £,(r, )m, L , VP &S (55)

Tvp
Condition for applying the Gauss-Ostrogradsky theorem is the existence of an fi(rp) vector-vector
function:

v, £ ):L , VP &S;. (56)

Tymp

The fi(rp) function is not uniquely defined by (55) and (56) respectively which explains the different
analytical formulas of gravitational potential and its derivatives found in the literature. Kwok (1991 a)
gives a special solution to resolve conversion of double integral to line integrals using a the Green’s
theorem in complex form. The obtained formulas are identical with formulas presented in the papers
by Gotze and Lahmeyer (1988) and Petrovi¢ (1996). Barnett (1976) and Okabe (1979) but instead of
vector analysis he used the analytical geometry tools. The obtained analytical formulas are identical
with those given by Pohanka (1988), Holstein and Ketteridge (1996) and Werner and Scheeres (1997).
The aim is to choose such function f which is defined in all points of the S; face and satisfying the
(55) and (56) requirements too (Pohanka 1988, Holstein 2002a, Holstein and Ketteridge 1996, Werner
and Scheeres 1997). Go6tze and Lahmeyer (1988), Petrovi¢ (1996) use function f which is singular at
points inside S;. Table 1 summarises all f functions used in the literature and their properties.
Hereinafter the verification of (55) and (56) conditions for all particular f; given in Table 1 is
discussed.

Sup _ Sup |, Sup ( )_ 1 ( ) 1 Sup Sup
LV, '[TrMPJ_rMP[vrP |+ Ve F el Vo Sup FSup Vi, 5 [F

Sup mp) Sup Sup Sup) Sup Tup

=r {i_zs .M}M.MZL
MP| 2 MP 4 2 T2

P Sup) Sup Tmp  Tup

v, — =y ~(§2ﬂ(rMP—|hi|)j=(rMP—|h[|{V,Pozzﬂ}r%Vm(rMP—|h[|)=¥~V,P(rM ):L

" rMP+|hi|_ " sup MP MP Sup Tup
11.
v, x(nl. X(M]rm)—_lh"'}ni = rMP2—_|h"|Vh ><(n,. stP)+Vr (WPQ—MJX(% stP) ‘n; =
’ Sup Sup Sup ’ U S
I 2 o2 _
= [2 rMPZ |h'| n + Sur (rMP rMP|hl |)sMP x(ni x sMP)] ‘n, =
Sup TyipSmp
=2rMP2_|hi|+S/%/IP_2rMP(:MP_|hi|)siﬁ)_ 1
Sup TaipSmp Tvp
The following relations were used:
V(uw)=uV-w+(Vu)-w and (57)
V x (uw)=u(Vxw)+Vuxw. (58)
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Table 1. Domain of definition of the proper f function and its properties

Author f Domain of definition Properties
(lig(;%t)ze and Lahmeyer f( ) Syp If M, e E, , then f; is not v, - f (r ) 1
i¥p)=—Tup = A - _ rp "SNP )= T
2. Petrovic (1996) Sup defined in the point P = M; Typ
- MJrh_zskl
Twp  Tup Sup
Pohanka (1988) s S
Ar, |= _MP__ _ V. - f =
f;(P) ’pr"'lh,l rp f;(rP) Fup
sl
== (”Wflhrl)
Sup
Holstein and Si
e — |y ' 1
Ketteridge (1996) fi(rp)=n, XEMJLH - (V,P x flre)) = —
Sup ) Swup MP
= xS
I (r:’I/[P +|hi|)
We will give the general solution of equation (56) on the set of functions

{£(r)eS,| £(r)= c(x',3")s, }, where (x’ y) is a local coordinate system in S; with origin in M;,
syp is the position vector of point P, s, =(x,)') and r,,=yx>+y>+h’ . We resolve the

v, )= xy)

mp

equation in  the local  coordinate  system.  Equation

V,  file)=V, (e yNx )= 1 leads to the following two first order quasilinear equations
MP

(Polyanin et al. 2002):

v oc (x’,y') iy

), 8bS) ey
ox

’ b
oy X" +y’2 +h?

whose general form of solutions is :

NSy
,x!2+ylz+hi2 _¢ [x,)"'rMP

c(x’, y’) = x’%(%j +

x/2 +y/2 St
’ ’ 2 U

where ¢*(¥j:{1+(¥j }qﬁ[iy] T =AY VIR s =X Y

X X X

¢*(y,j+rMP
The general solution of (56) is: £,(r,)= xfsw,
Swp

where ¢" is an arbitrary function. In case of ¢'= 0 we get the function fi which derives solution given
by Gotze and Lahmeyer (1988) and Petrovi¢ (1996), in case of ¢'= — |hl. | the fi which leads to
Pohanka (1988) solution. ¢"= — |h,. | is the only one function for which f; is defined on the whole

Si face and fulfils the Gauss-Ostrogradsky theorem in this domain (see demonstration 11.).
The sets of the vector functions fulfilling (55) or (56) conditions are the same, namely A=B, where
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A={f |(V,PXf[(rp)).ni =%} and B:{f| Vr,,'f,-(i‘p)=%}.

If the range of vector functions of A and B sets are set of vectors in S;, then it can be readily derived
that:

Stokes— Gauss—Ost dsk
f Stol es—nin auss-Ostrograds y’

where nj is the normal vector of S; face, f % is element of A:{f |(V,P><f,,(rp))-nizi} set,
Typ

whereas f Gauss-Ostrogradsky j5 element of B= {f| v, filr)= } set. If we use the function given in

Tvp
the paper by Holstein and Ketteridge (1996) from the set of functions fulfilling condition (55) and
applying the Stokes theorem we will get the following line integral:

() G,o0 Zh J-J'_d GpOZh IJ'V x f,(rp ) mdo, = po;h If (rp I, =

1(i) 1(i) (0]

G G G
pOZthfrPﬂ,dz : pOZthn xiﬁfm).ﬂycﬂp pOZhZhj +|h|

i=1 /lL i=1 /lL i=1 j=1 LMP
(59)

Using the function given by Pohanka (1988) which fulfills condition (56) and applying the Gauss-
Ostogradsky theorem we will get the same line integral like in (59):

U(m)= GPOZh j—d G"OZh jv,P. (Mo, = GpOZh [ £ vat, =

=l as;

1(i) 1)

GpozhzjfrP vyl =23 S [y, =SS S b, [— i, (60)

= el = j=l Tvp |h| =l =l LrMP |h|

Here we used the following relation
("i XsMP)'.”fj :(ni X,”fj)'sMP:vlj/'sMP:"y “Fyp=hy (61)

where v;j and z; are the normal vector and the unit vector of the j* segment of the 8S; polygonal line.

Furthermore, choosing fi which leads to solutions given is Gotze and Lahmeyer (1988) and
Petrovi¢ (1996) (Table 1) the transformation of the surface integral to line integral by Gauss-
Ostogradsky theorem is possible only on s, =, (M, &) domain due to fi singularity in M;.
(M) indicates the inner domain of the circle with centre in M; and radius & In virtue of Gauss-
Ostogradsky theorem in case of f; with singularity it holds:

20 VI RS ) AT

6*)0 2 i=1 i=1 0y

_hmG”OZh(HfrP vl + [ £(r vleJ:
i )

&0
S,n?(M, &

1(i)

Gpozh[zjfr,,vdz ~lim [ f(r sMsz]:

J= L Sm('(M £) Sup
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1) 2 2
Gpo Zh th'(#+ h ]dlp—lim I (Sﬂ+—hf ]dlp =
A L \Tup TupSup 0 el o\ Tup TupSup

n 2 2
:%zhi hy [L+h_i2]dlp_ im ﬂ' (SﬂJrh_in]P =
2 T\ A \Tur TupSup Rur=0s St o\ T TupSup

=%ih,. [t 3, j —dz,, I, |¢9J (62)
i=1 L J=1

J

;e = "vpSvp

J=1

Here was used the following relation:

s h2 s h?
lim H My Mdl,=lm | M J-J'dlp =
RMP‘)()Sim()(M‘-,g) "mp  "mpSmp Rur=>0 Typ - TapSyp S (M, Ryp)

s h?
= lim MP__ 4 ! 0.5 =\h;10,. (63)
RMP%O[VSMP-’—hiZ SMP\/SMP+hi2 J " | |

is the angle belonging to the S, <?(M,, &) arc,

i

2 if M, € IntS,
01_ _ T if M €5S { ,1, ,23 ~«9A,'1(,')} . (64)
Ay A A, =7 — arccos(y,-j -,u,-,-,]) ifM, =4, e {AllaAyzv )
0 if Ml. e Ext S,

The last step in deduction of the analytical formula of gravitation potential is the evaluation of line
integrals. By right of the (59), (60) and (62) relations this is carried out by evaluation of the following
primitive functions:

1 1
jr |h|dl j—dl [——ar. (65)

wp T Tvp "vpS up

i and c,= | My
Tvp |h| L,erP+|hi|

notations. Here we will get a solution of first indefinite integrals in (65):

h, ~ h, _th
ot 1)= Imdl_j\/l2+h;ihf+|h| J /dt+2h”|h”

JE+RE+h —1+|h —I+|h
:—hl.],hl(,/lz+hl.j2.+hf—l)+2|h,.|atan A =y n(ryp 1 )+2|hi|atanrf‘“’h—“—|h'|.

h

According to Pohanka (1988) we introduce the (h h, l) J'

i

1
——dt
t+|h |)Z+h2

ij ij

(66)
In the course of deduction the /I*+h;+h} =1+t substitution was used. Applying another

JIP+h; +h} =t—1 substitution we get:

h;
c(hi’hii’l)z_[ |h|

rMP+l+|h,.|

dl = h’f dt —2h, || j dt = h,;In(r,,, +1)— 2 |atan

(e +n, |)2 +h; ' hy
(67)
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by
h; [+h
c,, :Lj —fhdl:|:—h,.j In(r,,—1)+ 2|h,.|atanMPh—|q

i i

1+ T
={h,jm(rMP+l)—2|hi|ath_—M} (68)
i Iy

Pohanka (1988) gave an advantageous form of c;; from programming point of view presented below:

{sign(lzy. )1n va”' _ Sign(lzy )ln hy + |lw' |] 3

0i Foi

Zhu(lzu _Zw)

- 2|h,. | atan . (69)
("2[; + ’”u,‘)z _(lzxj =L, J+ 2(’”2[/ + r]fj)hf|
Based on Holstein (2002) we define the Cj; and the Qj; quantities:
¢, =h,C,~hQ, (70)
The integral form of the quantities Cjj, Qjj, Q; are:
h,
C,= —dl Q, —da , Q,=|—=do . (711)
J. Tvp A,'[, Tvp ’ 3[‘ Tutp )
Using (66)-(69) Cijand ¢, can be written as follows (Table 4):
ohanka 2 ohanka ly
Ciljj hank :_[ln(rMP_l)]llzj CP nank [hl(rMP+l) 7
CPohamka3 o (l )]Il rZif +|12ij . (l )]Il rlij +|llij| 72
i =signl/,; —signl/,; Jn ———. (72)
Toi Toij
Z215 L]
ry—L+\N. 2 Vypti+|n.
Q%’.ohanlm 2slgn (h ) atanL:l , nglzunka :—|:2Sign (hl )'atanh ,
i hij i hij
20, (1, ~1y)
Pohankd - 2ij 1ij
Q; =2sign (A, )-atan AT (73)

(”2;]""’11‘/)2 (ZU lll/)z+2(r2u+rlu)h|

where the upper indices denotes the author name. Holstein and Ketteridge (1996) used different
expressions for c(h;,hi;,l) and for cj;, which explains the formally different analytical formulas of first
derivatives of gravitational potential found in the literature (Pohanka 1988, Holstein and Ketteridge
1996). According to Holstein and Ketteridge (1996) is holding:

Mk _ rMP—|hI.| (T |hi| Tuap _ ||
el )= rMP+|hl.|dl_~[ i di=| 12+h;dl -[12+h2 j o242 di-] [ hzdz

I*+h+h} |n] o |n ]
_J 12+h dl_jlz 7di= IrMth dl_jzz hzdl_

I’ +h2+h
=J-

12+h j |h| = j—d1+h j—(—)dz |h|jl2 (74)
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The analytical expressions of the indefinite integrals in (74) are:

1 1
1 J‘—dl=jﬁdl=]n(l+,/lz+h;+hfj=ln(l+r), (75)
VI +h) +h,

Tvip
1 1 1 1
2. dl = dl = dl=—|————dt=
J.rMP(lz + hijz') J‘rMPRj/IP I h:+h? h? J‘hijz'tz + hi2
P+ IE 1 l’z’
th,. h., ,
:—Latan - :—Latan My :Latan M : (76)
hyh, h, hyh, i ) hh, rhy;
. _ . . . hi2'+hi2 7
The second indefinite integral can be evaluated simply by using the 1+ jlz =7=t
2 2
1+ h"/’;h" :%:t substitution. The last identity in (76) is based on the following common relation:
1 [ #/2 ifx>0
atan x+atan —= . .
x |-7x/2if x<0
3. J.%dlziatani. 77
F+hy by hy

From (74)-(77) we get the analytical expression for the indefinite integral c(h;,h;,l) and for c;j which
is its definite integral along the L;; line (Holstein and Ketteridge 1996):

c(hy by D) =h,n(ryp+1)+h, atan[:;l—fl]—|hi|atan(hiJ : (78)
i i
A r by
cl.j:I L —dl=| h;In Tl + hatan il | Jatan L
Iy Tvp +|hi| i Toij rMPhij hzj/ .
I i )|
—| iy | 2L g fatan| || (79)
| Toij Toi + rMP|hi| .

Using (79) the expression of Cj; and Q;; constants introduced in (70) are:

by
C~=f—1 dlz{m(—”w”ﬂ : (80)
vl 7.
L MP 0ij

by

lzu 12,, lZu
. h,l
Q, =sign(k, )- atan[iJ - atan[ bl J = sign (1) atan[z'—’J . (81)
hy; . Taiphy, . rol.j+rMP|h,.|

by

The analytical expressions of Cjj given in (80) are used as well by Petrovi¢ (1996) and Gotze and
Lahmeyer (1988), therefor we will use for this constant as upper index HPGL based on the initials of
the authors (Table 4). Analogously the two expressions of Q. given in (81) are marked with Holstein!

and Holstein? upper indices (Table 4):
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Ly
HPGL _ Fyp t1
Cl.j = [h‘l{r—j] ,
0ij Iy
E n "
ijl"”'“"} =sign (k)| atan| — || —| atan| — :
hy Tuarhy

by hii

i
_ by
. hl
Q; oiseit _sion () atan{—2 Y H .
L by

rOij+rMP|hi|

Holstein and Ketteridge (1996) and Holstein et al. (1999) gave analyﬁcal forms of Cjjand Qj; which
are advantageous from programming aspects:

14+ Iyi; + Ny

CH"S = Ty *riyg Fly = 2atanh b (82)

Y rzi/"'rlzj/_i/ 1_r2ij+r1ij ’

lij
th] |121] . . .

51gn 20 ln | if 51gn(12,.j): mgn(lll:l.)

C.Ijlolsteinz I’/ , (83)
[ /
sign(l2,/ (rzu 21/’!2(”111 |ll/) if sign(lw)i Sign(l,,;/«)
0ij
Zhi'(IZi'_lli') . . .
2 h. )-at AL B if L. )= [
) O e —d e o senl)

, i . (84)
’ 251gn(h ) atan ( 2h\ay —hy

i +dy f [+ 20rs, 4, b

2ij

if sign(lzl.j );t sign(lh.j)

where az:f:(rzierZZzy)(rlz:f_lhj) 7o v dy=ly—l,;.
Werner and Scheeres (1996) used the same analytical form of Cj; as given in (82), therefore the HWS

upper index was chosen for notation of adherent Cjj. The equivalency between (82) and (80) is
demonstrated below. We start with the identity:

roo = (rzz/ - 12,;,)(V2,;,« + lz::/)z(rw - lu/-)(h,;/ + lw). On this basis we can write:

hy ~hy _ Ty =l
o ] . Additionally:

Ty thy Ty Ty

Ty —lzy.+rw. +lly‘ _hy —l”j+r20.+lzy. Py 1y —lg. hytny +l[.j Py 1y —ly. Hy +lu,
Fy +lly‘ Fyy +12y. Ty +lh.j Ty +lzy. Tyt +l Ty +Zzy

This demonstrates the equivalency of the (82) and (80) formulas on the common domain of definition.
Gotze and Lahmeyer (1988) and Petrovié¢ (1996) deduced the equation (62) too. In order to get the

analytical formulas of gravitational potential from this equation the analytical expressions of the last
two indefinite integrals in (65) are necessary, namely:
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P> +h’+1
j —dl—]n(rMP+l) and j z:Latan{Mj. (85)

) MPS MP h; i h; hij

The analytical expressions (85) and (76) are primitive function of . They are formally

TrvipS mp

h
different, but it can be easily verified that the these two expressions differ in the ! atan (h_/J
iy i

constant. The expression of Cjj and Qjj constants based on Gotze and Lahmeyer (1988) and Petrovié
(1996) are:

1)

by
z ptrovm_Z{ J. dl +h[ h’/J.r 22 leJ—|hi|Hi ZI:h hl(rMP+l)+h atan[rhil ]]
MP™%ij Iy

J=1 L,;" MP>MP J=1

1(i)

-|nl6, => n,C,—hQ,, (86)

where
12”
CUF_IPGL: J'L dl=m Tuptl , (87)
i, Tmp Toij

Iy
L
) 1(i) hl
Qerve= 3" atan{ : J +sign(h, )6, . (88)
= Iyl ,

=
—
~

lZU‘ .
i 2, 72 10)
2 {h In(ryp+1)+h, atan{l +Zih+ lrMPH |16, = >y Cy = Q2 (89)
Jj j it ! J=1

~.
]

<.
I

1ij

by
C;IPGL: n Fyp +1 ’ (90)
» r()ij !

by
1(i) 2 2
QIQ—L — _z {atm(wjjl + Sign(hi )Hi . (91)

J=1 hihij

where:

by

Making use of cij, Cjj and €);; constants, the expression of gravitational potential takes the form:

1(i)

U(M)= G"O 9oy [ G”O > Z ¢, = Gp" 2o, [ﬁh,]c ~hQ, j (92)

i=1 SrMP i=1

which is a linear combination of Cjand €; constants. Different analytical forms of these constants
show different properties from programming point of view with regard to their stability domain.
Guptasarma and Singh (1999) and Singh and Guptasarma (2001) use another system of constants,
namely (Pij, Qij, Rij) to describe the analytical formulas for the first derivatives of potential. The
gravitational potential can be described with these constants too, as follows:

dl I dl dlxn,
i, y_J-rv J. ‘ul/xn)d J.rh/( xn) J.rh/( ><nl)=

Typ Typ L, Twp L, Twp
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d d d dé dé d
= (xl.fi - x{nm Zf/i i Jé} + (ylij - y{ni,] Z[,i —n; JE} + (le‘i - Z{ni,z Z[,E i J]ﬁ} =

:('xlij - X X” 39, —n i,ZRij)+(yl[j -y X” aRy—n 5P, )+(Zlij -z X" Py =m0, ):
:Iz:/"li/'(lz:/'x”i ) (93)
where di=(dZ, dn.d2), r, =(x.3.2), 1 =(En.8), m=n,.n,5.m,5),
Lj=ry;—n,= (xz,, xh-j,yzl-j—yl,-j-,zz,;,-—zl,j).

dn

de¢ . .
Pi, Qij, Rjj are successively the value of I do f— , I—g line integrals.
Jur 1, Tmp L Tup

—X,.. — V.. —Z,.
Since P(¢, 7, J)eLi, it holds: TNy _ MTVy _ ST

Xog =Xy Yoy Ty Zay T 2y

. é_xlij — .
Applying the ———— =t substitution, we get:

X, i “'Q)Clg

rp =E—xF +(n—yF +(5—2) = Ji2% + 20,0+ rZ . where 1= 1 | Making use of these
relations, Pjj, Qij, Rjj takes the form:

ag

/A Ir le: X1y _[ > = (xzz:/ _xli/')[ii’ (94)
L, Tmp \/lt +2r,” A+ Hy

and similarly

Q :(J/mj ~ Vi Mijs Rij:(ZZij_Zlij)[ij’ (95)

where

2 2
Ly +2nL; + g + 1 + gy

if Hy T hyMy # 0
I = L Hy T hy ‘ . (96)

The expression of the gravitational potential in terms of P, Qij, Rij, l; constants are:

1(i)
G"O Zh (Zh,,c,/ hQ. ]

n1G)
= %Zhiz(xlij - xXn,-,s i — Mo R, )+ (J’uj =y Ry —n ;B )+ (zh.j - ZX Py = 1,0, )
[

_Gpy Z”:h Q = (Zh lejrl,/(l/xn,)—ihfﬂi}. 97)
j= i=1

i=1 Jj=1
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1.2.5 Geometrical interpretation of Cij and Q; constants. Definition and interpretation of
particular vector invariants defined by means of these constants

The geometrical interpretation of the Q; constant will be introduced in detail in the following part
based on results presented by Werner and Scheeres (1997).

e e R

= s Tup s Tup s, Twp MP MP
- 2t [ e, =S [ [, S,
s, "mp S, Typ MP =L Tup S;
98
where -~
[ 0= [ A, - [ i), 9
VM iMp S, MP

We can concluded from the 21 remark of Theorem 12 that Q; is equal to the magnitude of that solid
angle related to the area S; subtended at point M. The solid angle for an arbitrary oriented surface S
subtended at a point P is equal to the solid angle of projection of surface S to the unit sphere with
centre P, which can be calculated as a surface integral. Additionally,

Q, ZQ”,WhereQ jj L L g _hﬂ . (100)

A, Tur  Tup Ay T

The following differential equation:

1
vV, filr)=— (101)
MP
is solved similarly to (56) on the set of functions {f.(r,,)e S| f(rp)= cy) s, } where (x',y) is
a coordinate system situated in the Si plane with the origin in M. In this system s,,, = (x'.y’) is the

position vector of P situated in S, 7, =+/x">+y'>+h’ is the MP vector norm (Fig. 2). The equation

\ filrp)= 7 leads to a quasilinear differential equation, whose general solution can be written
MP

as:

rMP¢*(y:J -1
-fi(rP): 2—)6 Sup- (102)

Suplmp

Choosing ¢ :hl the fi will be defined in Ay (Fig. 3) and fulfils the condition of Gauss-

Ostrogradsky theorem in this domain:

-1] -
Q,=h, [ fvdi=h, | w1 $yyp-vdl=h, j |h |-

5 s SLo
Ay Ay MP'MP Ly mpup

Syp VAl =
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by
) hi
=hh, di=| sign(h, )-atan —atan | — . (103)
JJ.(V’ |SMP SMPrMPJ |: [hzy} (rMPhij J:|

hi

We consider the following relation:

by hij by
latan[hiﬂ :sign(h!.f) atan[ﬁ] = sign(h,;)A,M, 4., , where the term {atan [hiﬂ in fact
ij ij ij

hy; I hjj
is the signed angle AjjMiAjj+1. hjj is positive if M is leaving from left when we moving along the 3S;
and negative when M is leaving from right. Summing these angles along the 8S;, we get the angle &
at which the 8S; closed curve is visible from the M; point:

0] &
Z atan L =0 . (104)
j hy

i)l

Q;; constants (103) are substituted in the formula (91):
1(i)

u(m) GpO i, = G'OO >h [ZhUC “hQ, J Gy h [%(hﬁCU—hI,QU)} (105)

i=1 Jj=1 j=1

Holstein 2002a, 2002b introduced the bj; vector invariants as a function of Cj; and €;; constants:

b, =v,C, (106)

ij i
Using the following relations: 74; =v;; -y, if PeLjand i, =n, -r,, if PeS; we can derive:
c;j =b; -ryp 1fPeLj
If P = Ajj the above relation becomes:
c,=b, n,. (107)

The potential formula with vector quantities:

1(i)

( ) G’DO Zn erU Fy s (108)

where r; =rwp is the position vector of an arbitrary point PS;.

Based on the Remark 2 of Theorem 12 in Section 1.1.1 and on relations (99) and (100) the Q; and
Q) in fact denote the solid angles associated to the point M and the areas S; and respectively Aij.
From definition the absolute value of solid angle of a planar polygonal region is equal with the area
of spherical polygon image projected on the unit sphere centred in M. (Fig. 5). In case of unit sphere
the area of spherical polygon is equal with the spherical excess (Bronstejn and Szemengyajev 1987),
S0 we have:

|| = Area(S; = A} Ay, .. A} . AjpAl) = B49 Sy — U@ —2)mr  (109)
2,| = Area (A’;,—MAAUH):mﬁw—n (110)

where S;; is the angle belonging to the edge MA;; and equal to the angle defined by the planes MAij1A;;
and MAjAjj+1. Let « be the angle determined by the MM;A;; and MM;Ajj+1. This is equal with the
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AjjMiAij+1 angle. Let S and y be the angles enclosed by the MA;.1A;; and MA;;Ai;+1 and respectively by
the MAjj.1Ajj and MAjAjj+1 planes.

We will demonstrate that the absolute value of the Q;; constant defined by (103) is identical with
the spherical excess given by (110). Allowing for the fact that «, 5, y<(0,) we have:

Laij

l

a = AijMiAij+1 = [atan (m)] (111)
R *T),

and =AQR, where Q and R fulfil the conditions 4,0 1MA4,,, , 4,01M4,, (Fig. 5). Thus

AinJ_(M,.AWM) and from this arise RQLM4,,. By right of definition the angle between the

MAi.1A; and MAjAi+1 planes is an angle smaller than 180° defined by straight lines 4;;Q and RQ

which are perpendicular to the common edge 4,M,4,0,RO1LMA,,, .

Fig. 5 The S; planar polygon and the adherent spherical polygon image S;”projected on the unit sphere centred in M, the plane
and spherical triangle faces 412 and 4iii”. Sy is the angle between the MAi.1A;; and MAjA.1 faces

y if ye(0.7/2)

, th
r—yif ye(r/2,7) e

. . . rMP|hz'j| .
It is easy to demonstrate that: tany”=———, where y" =

]

(112)

The same identity holds for g. Starting from (103) we have:
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Ly

: o (1 ni | ! bl
|Qif|: Slgn(h,-)~s1gn(hy _atan[h—J—atan(rM;hy ﬂ/m =| atan m —atan FALP'L!7|

atan 1—2 —atan l—l + atan rMP|h rMP mif I,>0,0,<0
| ij| |hij| |h | 2 |h |
= atan b —atan LN + atan [rMP J if,>0,,>0 = a+pf+y—-n.
[ [ Fup|P
atan| — |—atan| — |+ atan if /,<0,/,<0
pole=li o=t L)

7/2 if x>0

Here the following identity was used: atanx+atan—=
—-7/2 if x<0

In addition the (113) relation yields the geometrical interpretation of the atan terms in expression
(102) of Qj; .Starting from the geometrical interpretation of ©; and Q; (Werner and Scheeres 1997)
we can derive a more compact formula for these quantities. In the first step the relation (27) derived
by Werner and Scheeres 1997 will be demonstrated below for a special case.

Fig. 6 The solid angle Q defined by the vectors ry, r», r3; the angle S, determined by the planes (r4, r2) and (r, r3) and equal
with the angle between the a and b vectors. a, b are vectors situated in planes (ry, r2) and (r, rs) and perpendiculars to r,. n is
a normal vector of the plane defined by the endpoints of ry, r,, r3 vectors, r denotes the position vectors of vectors with start
point O and endpoint on this plane

A1z, A3, Azs denote the angles consecutively of vectors riand rz, r1 and rs, rz and rs. S; denotes the
angle of (ry, r2) and (r, rs) planes. We determine that vectors denoted by a and b, with the property
that a is situated in the plane defined by ry and r2, ae (r1, r2) and a L r,. Similarly the vector b fulfils
be (r, r3) and b L r, conditions (Fig. 6). From this S; is equal with the angle of vectors a and b. Let

K1, 1,a,b successively be the unit vectors of ry, ro, 13, @, b vectors. Since S;€(0,x), therefore
sinS2>0.

a :(rz ><"1)X"2 :"1(”2 'rz)_rz(rz "'1):"1’”2 — K1, cos 4, =nr K ( rZCOSAIZ)
Similarly:

b=r,x(r sz):r3(r2 1) =ry(ry -r3)= ryry =y cosdy =y (r ( -r COSA23)
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cosS, _ab_ rr (7 =1, cos A, 1, — 7, cos 4yy) __C084;—c0s4y5c08 4, , (119)
|a| |b| ’1’%’”24\/(;1_'72COSA12)2 \/(’%_;ECOSAB)Z \/I_COSZ Alz\/l—cosz 43
g - (r <)
sinS, =|r. ~a><b]= , (115)
’ |2 ( \/(l—coszAlz)\/(l—cos2 AB)
where:
Ccosd, =2 =75, cosdy =2 o p h . cosd, = =7 7, (116)
i | [

The area of spherical triangle defined by a trihedral, is equal with the spherical excess of spherical
triangle (Werner and Scheeres 1997), therefore:

an S +8,+8, -7 Ir, - (@X%) ~ Ir, - (r, ><r3X
2 1+cosA12 +cosd, + cosA12 BRIty + 1y By + T 1y
. S +8,+8, -7 . . . .
Since fe(O ﬂ) this angle can be uniquely determined using the atan2®e(-n, m)

trigonometric function:
S, +S, +8; — 7 =2atan 2(|r1 (r, ><r3)|,rlr2r3 + B A BECE BT ) (117)

Based on (117) we can established that the solid angle Q defined by r1, r2, r3 vectors is equal with
spherical excess assigned by them. The sign of Q is identic with the sign of scalar product n-r, where
n is the normal vector of the plane stretched by the r1, r2, r3vectors and r denotes the position vectors
of the plane points respect to the point O (Fig. 6). If ry, rz, r3 defines a right-hand system, then O and
n are situated on different side of the plane stretched by the ri, r, r3 vectors, thus n-r will positive
quantity. Otherwise if O and n are on the same side of plane n-r will be negative. Thus
sign(n-r) = sign(ra-(r2xrs)) and:

Q=2atan 2(r, - (1, X B 1y + 1Ey By + By By AT Ty (118)

Substituting in (118) instead of ry, r, ra successively the vectors hinj, rij = aij— rw, r2ij= &jj+1— rm We
get |sz| . Taking into account that (nj, rajj, r2;;) vectors form a right-hand system, we can derive:

Q" S—mgn(h )s1gn i)o|Q,j|:

—251gn(h ) atan2(s1gn(h,. jh,.nl.(r”j XFy, ],|h,.|r1,.jr2,j +|h,.|rll.jr2,.j +hr +hl.r21.].r1r2)

—2s1gn(h ) atanZ((h n, (rw. XPy; )),|h,.|rw.r2y +|hi|rw.r2y. +h[.rw.n[r3 +h,.rzy.r1r2). (119)
As we previously mentioned hj; is positive if the orientation of 0S; curve corresponds to right-hand

rule and is negative otherwise. The expression of Q;; notated by (81) contains two or four arctg terms,
but (119) and (73) formulas contains only one term.

Latan2(y,x) is the arc tangent value in term of radian of the argument of the complex number x+iy. If y=0, then

WS@n() if x>0 0 if x>0
atan2(yx)={ = 51gn( ) if x=0.Ify=0,then atan2(0,x)={ NaN if x=0,where pe[0,7/2[, tang=|yX|.
(,, o)sign (v )1f x<0 7 if x<0
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Q; can be computed using (100). According to this formula Q; is sum of Q;; terms, as follows its value
can be computed using least of I(i) number of atan terms. Accordingly with (109) another possibility
to compute Q; is using of S;; angles (Fig. 5). To compute Q; the computation of I(i) number of atan
terms are required. This formula permits the recursive computation of |o | (Werner and Scheeres,

1997). In case of convex polyhedron we have S;; € (0, =) for Viel,_n,Vjel,lii ).

) 0
|| = lzls. —(1G)-2)r = I_ZI(S;-,- —7)+ 27 =x,+ 2w €(0,27), (120)
=

y
j=

k
where x, = Z(Sl.j - 7Z)€ (— 27[,0). The recursive relation for x«:
Jj=1

CoS X, cos x,, —sin x,_, || cos (S,.k —ﬂ)
= . , k=11(i), x,=0, (121)

sin x, sin x,, cos x,, ||sin (Sik —7[)

Using (114), (115) and (116): cos(Sy, — 1) = “k=t Tt Cik T ) Ciken T gy

VI=(rig-1 T V1= Tine1)?

; _ _ [Tk (Tife—1 XTife41)| T
SIS = 1) = s ra - Caraa £ (122)

where r, and r, denotes position vector corresponding to the k™ vertex of i face with origin in M

|aik _rM|
I(i) steps we will get the value of cos xi) and sin i which holds cos [€;|= cos xii) and sin |C[= cos Xig)
based on (120). || can be determined using the atan2 function. Taking into account that the value of
the atan2 function is in the (-rr, m) interval because of the angle [ is in the (0, 2m) interval, the
following relation is valid:

. . ~ a, —r . . ~ ~ ~ ~ .
and the unit vector of this [r,.k =M]. Considering the 1, =ry;, ;). =F; conditions, after

atan2(cosxl(i),sinx,(,.)) if atan2(cosx,(l.),sinxl(i))ZO

| t|_{7r—atan2 cosx,(,.),sinx,(,.) if atan2(cosx,(,),smxl(i))<()- (123)

The examination of the inequality in (123) can be avoided using half an angle in atan2:

I—cosxy;
tan(x,(,)/z)= ———"10 (0,). Based on this we have the following relation:

SiIlXI(i)

IQ,| = 2-atan 2(1 — €08 X,(),Sin xl(i))'

The Qi and the scalar product n-r; have the same sign where r; denotes the position vector of S; points
with respect to the origin M. This sign is independent from the r;, thus:

Q, = ESign(n °r, ) atan 2(1 —C08X(;),Sin x,([)) (124)

The convex S; can be divided into (n-2) triangles. Due to (118) the computation of Q; can be performed
using only (I(i)-2) atan terms (Werner and Scheeres 1997):

(i)t
WS _
Q"= Z%atanZ(rl '("k er+1)”irkrk+l THF Ve TRy Tk "’k)- (125)
=
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1.2.6 The analytical formula of gravitational potential generated by polyhedron allowing for the
common edge of faces

Using (104) we have:

u(m)- G”°z”[2hv ] S YL 3 R T e Y IR R

i=l Jj=1 face edge face

face\ edge face

-9 Z(Z(’w'"i)(vij'ﬁy)cl} S} Z(" N, ), (126)

Let E be the number of polyhedron edges. Then the 2£ =" (i) sum is equal to the number of terms

i=1

n_ 1
in the Zﬁ:zz sum. Every edge belongs to two faces, let i and i* be the order of these and let

=l j=1  face edge

j, J" be the order of common edge of the i, i" faces. Let (n;,v;. ;) and (”i*"’i*;*’”i*/*) be the
coordinate systems belonging to the common edges Lij=Lij+, where n; and n;- are the normal vectors
of the S; and Si- faces. For the point PeL;=L,.;. situated on the common edge it holds that r;; = ;..

(Fig. 7). The direction of the ij" and i"j" ™ edges are opposite in case of positive direction of faces
belonging to these edges, thus

1

L, »
Cedge = Cy_ =|In rMP—” =—In rMP—+Z =—C... (127)
To;i ) Toir 1 "t

2"

Int(Polyhedron)

Fig. 7 The S;, Si» are the polyhedron faces belonging to the common Ljj=Li«~ edges. ("n"w”u) and (nl, R )are the
associated coordinate systems. The vector system (icdge, jedge: Keage) O the common edge is a right handed coordinate system.
The dashed part represents extension of S;» polyhedron face in Ext(Polyhedron) — R®
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Using the fact that in the sum (127) every edge belongs to two different faces, we can conclude:

G, G,
U(M ):%ZCIJ (redge'(ni ovy;—h, Ovi*j* )redg2)> 50 ZQl(r; '(ni on; )rz) ! (128)

edge face

where - denotes the dyadic product?. In (128) the following property of dyadic product was used:
(c~a)(b-c)=c-(aob)~c.
Let be

i

Pegoe =M °V; —n.ov..and ¢ =n; on,. (129)

Using the fact that in the sum (127) every edge belongs to the two polyhedron faces, we can conclude:

G G
U(M) = 2po z Cedge(redge : ¢Bdge : redge)_ 2po zQiri ' ¢[ ' r: ' (130)
face

edge

In (130) the number of terms are E+n, where E denotes the number of edges, n denotes the number
of faces. In (105) the number of terms are 2E+n.

From the definition of ¢ it followes that ¢ is a symmetric dyad. Henceforth based on Werner and
Scheeres (1997) we will demonstrate that geqge i @ Symmetric dyad too. Let « be the angle of normal
vectors n; and nix, which is a = arcos(n;- ni=). The angle of Sjand Si~ faces with the common edge
Lij=Lix~ is 7 - a. We define a local coordinate system (iedge, jedge, Kedge) Where ieqge is Oriented towards
the insideof polyhedron and the angles enclosed by this vector with S;and Si» are the same, namely
(m - @)/2 i.e., it bisects the angle between the faces. Direction of the vector Keqge has to coincide with
the Lj; edge direction, accordingly we have Kedge = f4j OF Kedge = fi*j+. The jeage is chosen so that (iedge,
Jedge, Kedge) s a right-handed system. For ni, ni, vij, vi== vectors and for gedge dyad we have:

1, = 08( a2,y +5in (7 = 0112V = —00( 2N +5i0(0]2) (131)
n,. = cos(7 + @ 2)i, g+ 507 +/2)j g0 = O 2 g = 510/ 2) e (132)
v, =c08(37/2 =) 2)i gy 50 (37/2 = /2] 0. = — i () 210 = O/ 2)j (133)
Vo = COS(37/24 @/ 2 gy, +5N(B7/2+ @/2)j 4, =50/ 2)i i, —COS(/2)j (134)

vij = COS(37Z'/2 - a/z)iedge + Sln(37l'/2 - a/z)jedge = _Sin(a/z)iedge - Cos(a/z)jedge =

=sin a(iedge ° iedge _jedge ° jedgé’) (135)

Since 40,4 oige = Jodge® Joage 1S @ Symmetric dyad gedge is @ symmetric dyad too.

1a°b=[u,bj] o+ Where a =(a],a2,a3), b=(b,,b2,b3)

i,j=1,
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1.2.7 The analytical formulas of first derivatives of gravitational potential generated by
homogeneous polyhedron volume element

Using the introduced cij, Qi, Cjj, Qjj scalar and the bj; vector quantities the gravitational potential and
its first derivatives can expressed as linear combinations of these quantities. We start with applying
the gradient operator to gravitational potential

\ ( ) Gp,V,, I—dvp Gpo.[V —va = GpojV =-Gp, J'_do.P
= Typ rMP cZ Typ
n 1(i)
= °ZI o, =-Gp, 3 n f op==Gpo 2 m, Zcu : (136)
=15, Tup =5 ”MP o A

To transform the volume integral to surface integral we used Corollary 3 of Gauss-Ostrogradsky
theorem. Based on the relation (98) the formula for the first derivatives of gravitational potential in
terms of introduced scalar quantities can be written:

n n 1(i) n 1(i)
( ): —GpOZn ZC” - Gpozn (Zh Ci/' - hiQij = _Gpozni[Z(hngzj - hiQi/' )] : (137)
i=I i=I j=1

Furthermore the formula of the first derivatives of gravitational potential in terms of introduced vector
quantities is (Holstein 2002b, equation 2):

n 1(i)

LUM)= ~Gpy 2om, Zb,, (138)

Using the Uy, k= B notation for the components of gravity vector, i.e,
v.U- [au oU U

P ] (U,,U,,U,), then the following relations hold:

n 1(i) n (i)
0 0)-0n. S0t e, =G S| S, -he) 19)
i=1 Jj=1 i=1 Jj=1
1(i) J—

U, (M)= GpOZn ekZb r,, k=13, (140)

where nl." denotes the k" component of n; vector and e, , k = 1,_3 are the unit vectors of the coordinate

system.
The number of terms in (137) is 2E+n, where E is the number of polyhedron edges and n is the
number of polyhedron faces. Using dyads the number of terms can be reduced to E+n terms:

n 1(i n [ 10) n
er ( ) GpOZn [zvu rll/ ij n "Q j _GPOZ[ZQ/nz (vz/ rlz/)] +GPOZQini(ni rl):
i=1

i=1 j=1 i=1\_j=1

=-Gp, Z ( ( edgc’) n. (vi‘j‘ ’ redgef))+ Gpy ZQini (ni n ) =

edge face
= _Gpoz edge dgeredge+ GpO ZQ ¢r . (141)
edge face

The last relation in (141) is identical with the Equation 15 found in the paper by Werner and Scheeres
(1997). In (141) we used the following properties of dyadic product:
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a(b-c)=(aob), (142)
in virtue of this we have:

ni(v,j By )— n. (vl_.j* T ) n, (v Foe )— n. (vl_.j* Foge ): (nl. oV —m. oV, )redge = Goge Tege »aNd
"i("i "’i):("i O"i)ri =gr,.

Henceforth we deduce formulas differing from (137) and (138) which is identical with the Equation 16
presented by Holstein (2002). Deduction of these formulas differs from the demonstration presented
in this paper. We start with the following equation:

RS 1
ox, \ Iyp 6xk Typ
where X, =X, X,=Y, X,=Z.
To prove (143) we use the property (57) of the V operator. For x,=x we have:
(EOOREhs
Ox ox\ r ox\ r
50 [1} =3 3aeNyn) He—éed)), H
ox\ r r ’ r ’ P Cox

Here we used the V-r = 3 identity. In the following we present the deduction of analytical formulas
of first derivatives of gravitational potential for k = 1:

000)-Ga, =[] L, G [[] L, -G [ & [},
:_Gpoﬂv (a@( ! ] }, GpOZﬂagl( JrM,, ndo, =-Gp, S, H

i=l g =l s rMP

(144)

In order to realise the conversion from surface integral to line integral we have to solve the following
differential equation:

V. filr) =St (145)

Tvp

We resolve this equation in the (x', y', z') coordinate system, with unit vectors: e’= e, %= n,,

e = —4 X% Tocompute Uy, Us we substitute e; successively with e, and es. e, is defined so that

sin(n,.¢,)
(e,6%,e%) is an orthonormal basis set, i.e., e’ = e’,xe’. The transformation matrix between the
4 ’ 4 .
(e, &, €;) and (e e’ e%) systems has the form:

ﬂnlz +n
- nlln12/\/n12+n 13/\”12+n13 n y
ni,lni,3/\/ni,2 +ni,3 ni,z/\/ni,z +ni,3 N,
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where nij j:l,_3 are the components of the n; vector in the (e,

e, €,) system, that is
n,=n,e +n,,e,+n e;and n, =n, e, =cosn,e;) , j=13 , the upper indices denote the

exponent. The equation of linear transformation between the two systems is:

(r.y.2) =4 (<.y" 2 (146)
where T denotes the matrix transpose operator. Written < :x in (e7,e%,e%) system we have:
"vp
_ _ ’ _ ’ . ’ _ ’ h
§3 X-_ nlz+n,3 ¢ +n,.,1 ¢ 3 z =—sm(ni,el)§Tx+cos(ni,el)?‘ . (147)
Tmp rMP Typ MP Tvmp

The expressions of ryp in these two systems are:

R =N (E=xf 43P (G =2 =& =2 F +lr—y P (&= P =€~ P +lr—y P

1 —x'
It is easy to see that: V '[—,0] _¢ .

3
Tvp Tvp

Using the solution (102) of equation V'f,.(rp):é given in Section 1.2.4 and the relation (147) we

MP
can convert the surface (144) into line integrals using the Gauss-Ostrogradsky theorem:

-E-[ai;l[Ljd ”5_ 5 Zdo, =—sin(n; e, )ﬂé:—dop+cos (n; e, ﬂ—a’aP

Tup s, Tup s, s, Twp

infu e H[rw
=—sin nl,e1 ﬁj( J(v el,,ll—(vy_.el’)zjdHcosn e “Z[ L
in(n,,e,) icos Uihd I—dl+cos n,e) ihl, {—— 21 ]dl (148)

Jj= n;.e ), vp |h| Sup  Suplup

j-vdl +cos(n,.e, )‘Uf(r,,)-vdl =

l’MP|h | 1 sMP.v__d[:
ij
1

v denotes the normal vector of dSi. In (148) to evaluate the v, -e, product we use the expression of

e/ in(e,e, €3) coordinate system based on the (146) relation and we use the v, n, =0 identity since
v, Ln, . Thus we have:

2 2 1702 170,3
v.-e =v | —\n+n,e +—— e, +—— e, |=
lj 17 1, i, ) 2 ) 2
ny+n;, ny+n;,

2 2
2 2 ;1o n; ;5 TSV TV RV TR, 3V
=—4/1i5 +}’li2V1i-+ VZ“+ Vi = =
B B ij ij ij
2 2 2 2 2 2
Ri3tn, N3t ni3tN,
2
— N3V n, 2V T 5V nz,lvlzj MialigVay Viij __cos (vtj’el)
2 2 sin (n. e )
\/I’lu + ”i,z \/ni,3 +n;, i2€)
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Using relations (99) and (103), (148) can be expressed in terms of the parameters introduced as
follows:

.Uag (,, J o, = J‘é dap_li)<cos(v el)C cos(n,.,el)Qlj>. (149)

3
s, Tup =1

In virtue of (149) we can give another expression of first derivatives of potential which will differ
from (138) and (139):

U( )=—Gp02h H—daP ——Gpo[Zh Z):cos(vl],el)c —cos nl,e Zh ZZ‘Q J

i=1 Jj=1 i=1 Jj=1

on $h[ Sl -coln.e)|--6n S Sl - |

=l =l j=1

The same expression holds for the partial derivative with respect to y and z. The analytical formula of
the first derivatives of potential generally can be written:

n (i) _
U, (M)= —GpOZhi[Z(Cljvij e, ~Qun, e, )J k=13 (150)

=1\ =1

n 1([)
VrM U(M) = _Gpozhi[z(cijvi/’ - Qi/'ni )j . (151)

=1\ j=1
Using the introduced vector quantities the expression (151) can be given as follows:

n 1(i) 1(i)

Vr‘,U(M): _Gpoz )zby = _GPOZ( n; "?)Z(Cy’vij _Qy‘”i)- (152)

i=1l i=1 Jj=1

Using the Py, Qjj, Rij, Ijj constants introduced by Guptasarma and Singh (1999) and Singh and
Guptasarma (2001) the first derivatives of potential can be given as:

Cpv, - .[(.”z XH; )dl _[ dixn
L, Tup L; "MP
B ﬂ B ﬁ E _ déf ﬁ — ﬂ =
= {I’l;g Jj - ”l[,zi.’. o }91 + [”;,1 LJ‘” - nis i[” Fup Jez + [l’l JHVMP it Lj‘” yp JeS
( 305 —mi Ry )el ( iRy =i 36 )e2 +( By —n;,0y )83 '(lij x nl')' (153)

where di = (d&,dn,d¢), vy, =(x.9,2), 1, =(E0.8), 1 =(n,.m0m5), 1= 1)
ly=ry;—n; = (xz” = Xijj> Vaig — Viijs Zaij — 21”) and Py, Q;, Ry, I, are given by (93)-(95) expressions.

The general formula of the first derivatives of potential generated by a polyhedron is:

n (i)
U(Mm)= —Gpo[z h,.(ZIU.(IU. xn,)-Qun, B . (154)

The first component (derivatives with respect to x) of V, U is:
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i=1 j=1

U,(M)=—Gp, {Zh [f(m —naR,)-Qun, B . (155)

From (138) and (152) arise the next identity between the introduced vector parameters:

n 1) n 1G)
Zni '(Zbij'rlij]:Z(ni 'ri)'zbij : (156)
i=1 =1

Jj=1 i=1

(156) is identical with Equation 9 given by Holstein (2002b). In the following we will demonstrate
(156) in a direct way. From the fact that all the edges of a polyhedron belong to two faces, it follows

that the number of edges E fulfils the following relation: 2E = Zl(i). We use i, j and i", j* notation

i=1

to indices of faces and edges for two secant faces. Let (n,.,v,/., p,:/.) and (n oV e ,_.j,) be the

coordinate systems belonging to the common edges ij and i"j" (Fig. 8). Based on relation (106) we
have:
n,-(b, 1, )=n,(Ch,~ 1 )=C hym, O i, (157)

(7 (/A e

(m,1, )b, =hCpy,~h Q. (158)

i i

Fig. 8 The position of n;, v, vij and ni», vij+, Vix» Vectors belonging to the polyhedron faces S;, and S;~ and the observation
point M. S, S+~ are faces belonging to the common edges Lj; = Li~~ and perpendicular successively to the faces Si-re and S .
The dashed part represents extension of S; and S;- polyhedron faces in Ext(Polyhedron) < R®

The same relations are available for the i*j" edge too. In case of positive orientation of these two

polygon faces the common edges ij and i"j” will get opposite direction. In the following we will prove
the relation:
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n i n (i
m ﬁcxyhfzhiﬁ%v,;, : (159)

=1 j=l =1 =l
We start with demonstration of the following identity:

n,C;h; +n. C e =hC; +h.C.v. . (160)
ij i
Using the identity C; =_C,-*,-' (Eq. 127) and simplifying expression (160) with Cj we get the
following identity:
mhy —n.h. . —v;h+v..h. = (nihy. —"yhi)—(”;h;j* V. .h ): vy =v..=0.

The Si, Si~ polyhedron faces divide the space into four disjoint parts. The S; and S+ planes going
through the common edge of S; and Si= and successively perpendicular to these planes divide the
space into four disjoint parts. The sign of h;, hix, hjj, his+ is changing depending on the position of
computation point M. In the proper situation as shown in Fig. 7 the sign of these quantities as a
function of M are: hi<0, hi=>0, h;>0, hi=>0. It can be easily demonstrated that length and direction of

=nh;—v;h and v.. =n.h..—v.. h. vectors are the same, so (160) is demonstrated for the

concrete position of pomt M presented in Fig. 8 Similar consideration can be carried out for an
arbitrary position of M. Each edge in the summation (159) appears twice. Using the identity (160) the
(159) and on this basis (156) are evident. Using (156) and applying the V operator to the (108) formula
of gravitational potential, we get:

0]

Gpo n 1(i) n 1(i)
VrMU(M)zTVm 2 )by | === Z” Zbu"lu“LZ n-r,) Z((V,Mbu)rw—b,j) =
i=1 j=1

i=1 Jj=1 = Jj=1

0 v } G Sn-rlB, o -

i=l Jj=1

) G 1(i)
——Gp{Zn Zby rluj 50 [Z( i"'i)Z(Vm, 'bly')rw]' (161)
i=1 j=1

i=1 j=1

From (138) and (161) is apparent that the derivatives of b;; vector fulfil the relation (10) given by
Holstein 2002:

n 1(i)

> r)Y (v, b, =0. (162)

i=1 j=1

In the following, we derive (156) and (159) using the dyad and its properties. For symmetric dyads ¢
we have:

aT¢ =ga, (163)

where a is an arbitrary vector. Using relation (163), we have:

n 1(i)
U (M ):_Gpo;”[’?z_ll(cfivzi_gzi"i) GPO[Z (( i edgt)vl/ n. edga s )+ZQ J

edge face
__Gpo dzcedge( edge¢edge)+ GpO /ZQ ( )__GpO dzcedge( edgc’edge)+ GpO fZQ (¢lrl ) (164)
edge ace edge ace

(164) is equivalent with (141), thus the analytical expressions (138) and (152) of the first derivatives
of gravitational potential are equivalent too.
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1.2.8 The analytical formulas of second derivatives of gravitational potential generated by
homogeneous polyhedron volume element

The second derivatives of potential are the derivatives of the gradient tensor V, U . The second

derivatives form a tensor, namely the gravity gradient tensor or E6tvos-tensor is:

o'y U U |
ox*  oxdy oxoz

2 2 2
£ o°U 8(5 o°U _[v.] & (165)
Oyox Oy 0y0z
o’'U o'U U

| 0z0x  Oz0y oz* ]

2
where U“:a—gj,U12 8 v and similarly for the other indices.

ox 8x8y

For the variable we use the notation: x,=x, X,=y, X,=z, £=¢ &=n, &=¢ where X, y, z are the

coordinates of computation point M and &, 7, £ are the coordinates of polyhedron point P. Based on
(136) the elements of gravity gradient tensor can be given with the following surface integral:

U,(,(M):ai;(é(U(M)J:—GpO [Zn ekﬂ—do-PJ Gpozn e{ﬂaé[%)ﬂ J

Using (149) the surface integral can be expressed in terms of constants C;; and Qj;:

n ! (

n 1(i
Uk,( GpOZn ekZ(cos(vU,e/)C cos(n,,el)QU) GpOZn,.-ekﬁ(vﬁ-e,C_l.].—n,.-e,Q_,.].)z

i=1 Jj=1 i=1 Jj=1

n 1(i n (i n (i P
=Gp, Zn:‘,k ﬁ(vij,lcij - n[‘/Qij): Gp, Zni,k ﬁbij,/ =Gp, Z”f ° ﬁb[j , k=13 (166)
==l i=l j=1

i=1 j=1

where n, (n,l,ntz,nﬂ), v, (V:HV:Z’V ) b, (bll,blz,b ) and o denotes the dyadic product
defined on Section 1.2.6. The expression of E6tvos tensor elements in terms of Pjj, Qjj, Rij, Iij is:

n 1) —
Ukl( ) GPOZ” ekZ(vU ¢,Cy—n;-Q ) Gpozn,k[z‘,(w ,jf_”i,zRi/)_nt,/Qi]v k,1=13.

i=1 Jj=1 i=1 Jj=1

(167)

The expression elements of the gravity gradient tensor as a function of dyads (Werner and Scheeres
1997, Eq. 16):

UU( ) Gpozcedge i Deagli GPOZQ ek¢el ) (168)
edge i=1
and in matrix form:
[Uk/ (M)] =13 — GpO Zcedge¢cdgc Gp() ZQ ¢ (169)
edge

AU(M), the sum of the homogeneous tensor elements, or Lapacian, can be expressed as:

AUM)=V(VUM))=U (M) + Uy, (M)+ Uy (M) = GpoZZn,kﬁb

k=1 i=1
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n (i) 3 n (i
:GpOZiZni’kb,j,szpOZZn b, —GpOZn ib,j. (170)
Jj=1

i=l j=1 k=1 i=l j=1

(170) is identical with Eq 17 given by Werner and Scheeres (1997). Applying relations (40) and (41)
presented in observation 2 and 3 of Theorem 12 regarding to the double layer potential we get the
well known Laplace equation:

i
Gpozﬁnb =Gp,Y) ﬁg GpOZQ -G oszd

i=l j=I i=l j=1 i=1 S;
0 if MeExtX
(171)

"|-42Gp, it Melnts

This equation serves to decide the position of point M referring to the = = R® domain defined by the
polyhedron. Applying the V operator to (152) we get:

n 1(i)

v, (v, UM))=aU(M)=—Gp,V, [Zn ﬁr]” "J Gp{Zn wa Zn Z( ,1b,/)rmJ (172)

Comparing the equations (172) and (170) we have:

3 ](')( by iy =0, (173)

From equations (173) and (162) arise the property of b;; vectors regarding to the V operator given by
Holstein (2002b):
1(i)

> (7, =0, (174)

j=1
On this basis we get:
I(i

1(i) 1(i) 0]
Vi (b,.j -rh.j)z (Vr,\, by )’w‘ + Z(Vr,\, “hy )by' = Zby' : (179)
j = =

J=1 J=1

Based on (175) we can show that bj; appears invariant (acts as a constant) to the gradient operation.
Because of this property the b; quantities are called the gravimetric invariants of the polyhedron
(Holstein 2002a, 2002b)
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1.2.9 Summary of analytical formulas

Hereunder we list the analytical formulas of gravitational potential and its first and second derivatives

generated by a polyhedron.

Analytical formulas in terms of constants Cj;, Qij, i, Qjj, Rij, Pij:

1(i) 1(i) 1(i)
U(M)= GPOZhZ ¢ G”OZh (Zh C, th GPOZh (Z(h C, h,Q”)J (176)
i=1 = i=1 Jj=1 i=1 Jj=1
G 1(i)
( ) 2P0 Z]h Z;((xu xX ,3Q ) (yw' -y ni,lRij _ni,3Pij )+ (Zlij _ZX i, y ,1Q ))_
= J
_Gpi e
5 !Z::‘h[ Q.. a77)
n 1(i) n 1(i) n 1(i)
L U(M)= GpOZh[ (v, —Q,.jn,.)J ——Gp, Y, [Z(h C, hIQU)J -G, YnYe,,  (179)
i=1 Jj=1 i=1 i=1 Jj=1
n (i
U, (M) = _Gpo[zhi[ﬁ(’li,} i ni,lejf)_Qini,l ]] )
=1\ j=1
n i
U, (M) =-Gp, (Z hi[ﬁ (ni,lRij - ni,}R’j)_ Qn,, ]J )
i=1 j=1
n (i
U3 (M)=—Gp0 th‘[ (ni,zpij _ni,l ij)_Qi”i,}J : (179)
i=1 j=1
1(i
Ukl( ) Gpoznzkﬁ("qu/ - ll l/ Gpoznlkﬁb (180)
i=1 J
( ) Gpoznzk(ﬁ( 13Q11 ) ni,IQi '
J
1(i
U, (M): Gpozni,k (ﬁ(”i,lRij - ”i,3Pij)_ n;,Q; |,
i=1 Jj=1
1(i
Uk3( Gpozn,/‘[ﬁ( [' 1IQ1/) 13 (181)
i=1 J=1
Analytical formulas in terms of vector invariants
n 0]
U(M)z%Z(”i 'ri)zbij R (182)
i=1 j=1
nIG) 1(i)
( ) Gpo [zh le/rlt/ (1/ xR, ) zhiZQi] ’ (183)
i=1 j=1 i=1
(i) n (i)
v, U(M)= GpoZ(n -1y )Zb =Ga 2 by (184)
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0 1,,( ) ’_n,.JJ , (185)

Jj=1

v, UM)= GpO[Zh{

i=1

Uy(M)= GPOZ" ekZ(ij"elCij_ni'elQij)' (186)

Analytical formulas in terms of dyads:

G
U(M pO ZC dge( Ldge¢edgL edgc) pO ZQI 1¢1 i, (187)
2 edge 2 face
VrM U(M) GpO Z edge’¢edge,redge + Gp() Zgﬁﬁz’} ' (188)
edge Sface

Uy (M ) =Gp, Zcedggel{ ¢edgcel - Gpozgfef pe

edge i=1

[Ukl (M )] 3= =Gp, Zcedge¢edge Gp, ZQ ¢ . (189)

edge i=1
Relations between the constants and vector invariants:

hy=v,t;, c;=b;n;, h=n,-r, ifPeS, ¢,=h,C,—hQ,,

ij [ (] i I’ [/t
b, =v,Ci—m Y, 1=y — Ty = (Ko Xeipr Yai Yaipr Zoi— Zaig)s
ni - (nl l’nl 2’” ) vi[ :(Vij,l’vl:/,Z’Vl:/J) (bl/l’bl/2’bl]3) (190)

The different analytical expressions of Cjj and Q; constants founded in the literature are summarized
in Table 4.

1.2.10. Domain of definition of analytical formulas and its numerical properties

From the potential theory (Theorem 10) and based on relations (46)-(51) we can conclude that the
gravitational potential and its derivatives generated by a homogeneous polyhedron has the following
properties:

1. U and VU are continuous functions on the whole space, i.e.: U eC' (R3).

2. U is an infinitely differentiable function on the exterior of = — R® domain defined by the
polyhedron, i.e.: UeC"°(R3 \z

3. In case of a homogeneous polyhedron the density function satisfies the condition
peC(2)nC'(Int(z)), which is a sufficient condition to ensure the existence of second derivatives
of U in the interior of the polyhedron, i.e.: U e Cz(Int(E)).

4. In exterior domain of the polyhedron the Laplace equation is valid, in the interior domain of the
polyhedron the Poisson equation is valid, i.e.:

0 if M eInt(2)
AUM)={ —4mp,G if M eExt(Z).
does not exist if M €%
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Domain of definition of the introduced constants and vectorial quantities deduced from integral form
of its definition

The analytical formulas (177) — (189) determine the domain of definition of these quantities.

1(i) 1
Considering Equation 92 the c;; constants satisfy ZCU = f do, ,wherec; = .[ —do, . Based
7,

j=1 "vp Ay, | MP

on Theorem 8 of potential theory these integrals exist for every point M of 3D sg;ce. Thus c;j and
%Cﬁ are defined in all 3D space, i( ) R’ and ﬁ[%c J R, where 22 denotes the largest
j=1 T
possible domain of definition. ]
Using the relation (190) between the constants and vector quantities we have lﬁcy = %b[jr“. , from
1) " 7

which results that the domain of definition of expression ) b,

3
1y 1S RS

Jj=1
By right of (176) and (178) the domain of definition of U(M) and v, U(M) are identical to that
1(i)
of ZC,-, . Similarly from (182) and (184) the domain of definition of U(M) and V,VU(M) are
JA ‘
1(i)
identical to that of Zb[/rw . Thus the domain of definition of gravitational potential and its first
j=1

derivatives is the all 3D space R®. The same conclusion can be drawn applying the Theorem 10, which
states that the gravitational potential and its first derivatives generated by a homogeneous polyhedron
are continuous in the whole space:

Uec'(®).
1(i)
The domain of definition of c;; and ZC,., is the intersection of the domains assigned to h;;Ci; and hiQ;j
j=I
because of the relation ¢, =h,C;—hQ,, .

Relation (186) shows that the domain of definition of second derivatives of gravitational potential
is intersection of domains of definitions of constants Cjj and i, which is equal to the domain of
definition of vector quantities b, =v,C,—n,Q, .

In the following we investigate the domain of definition of Cj, Q; and h;Cy;, hiQi quantities by
right of its definition in integral form and respectively its analytical formulas. The numerical
instability of these analytical formulas are investigated also. The integral form of the quantities Cj;,
Qijj, Qj are:

1
C, = j —dl, (191)
oL e

h; 1 rypn; s(rypom

Q = j TdO'P > MP J. MP Op, (192)
Ay TP Ay TP rMP

h; 1 rypn, cos Voo, N
o= —-do, = | = d j w222 do (193)

S; MP S, MP MP S; MP
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Based on the Observation 2 and 4 of Theorem 8 Cjj is defined and infinitely differentiable on the
whole space except the Ljj segment, i.e. & (Cl.j>=R3 \LU. (Table 2).

Based on Theorem 12 regarding the double layer potential we can conclude that Qj, Q; are defined
and infinitely differentiable on whole space except the interfaces Asjjand S;, i.e. & (Q,:,.)z R Ay,

ﬁ(Qi)= R ['S; . On these interfaces Q; and € are discontinuous of second kind, namely when
approaching the surfaces from different directions the limit of integral formulas varies in function of
directions (Table 3). From Theorem 12 we get the following limits for these quantities: QU(oo)zo,

Q[(OO)ZO-

Domain of definition of the introduced constants and vectorial quantities deduced from their
analytical expressions. Investigation of numerical instability of these formulas

The analytical formulas of the constants Cj;, Qjj, i and the domain of definition of these analytical
expressions are summarized in Table 4. It is shown that domain of definition of analytical formulas
differs from domain of definition assigned by the integral form (henceforth will refer to it as
theoretical domains of definition) of these constants. Based on Table 4 we can state that the theoretical
domains of definition of Cj; coincide with the analytical domains only in the Ci°s®™ and Cf"5<"
cases. In other cases the domains of analytical formulas are subsets of theoretical domains. The
programming of gravity field parameters make use of analytical formulas of Cj, Qjj, Qi constants,
which requires the domain of definition of these constants because gravity related quantities can be
evaluated only that specific domain. Out of domain of the analytical formulas the computed gravity
parameters values will be “NaN”. This can be avoided by introducing an & threshold following the
Pohanka (1988) idea. In this case we substitute the exact values U(M), Ux(M), Uu(M) with
approximate numerical values U(M, &), Ux(M, &), Uu(M, &). In Section 1.2.11 we will give a detailed
analysis of the error introduced by the & quantity. Making use of an adequate & threshold we can
extend the domain of definition of analytical expressions to the larger domain (theoretical domain).
Thus the computation can be performed in this larger domain assigned by the integral form of these
quantities without additional investigation regarding to the position of observation point compared to
the polyhedron. Additionally it is important to know the behaviour of formulas from a numerical point
of view and specify the domain of stability of these analytical expressions. Numerical stability means
that the computed value is not dominated by rounding error. In Section 1.2.11 we will precisely
determine the stability domains of Cj;, Q;j, Qi constants.

1. Analysis of the analytical formulas for the Cj; constant

Using notation introduced by Holstein and Ketteridge (1996), we denote with « the typical dimension
of the target body (polyhedron) and with ¢ the typical distance of polyhedron from an observation

a
point P. Their ratio y = g is a dimensionless quantity.

The theoretical domain of definition of the Cj; constant derived from its integral form (191) is
D(Cl.j)zR3 \L; =R*\ AB. Without constraining the generality, the numerical investigation of the

Cij constants may be limited to an Lj segment, where « denotes the length of the segment, and &
denotes the distance of the observation point from the segment. The value of Cj; depends on the
relative position of the observation point and the L;; segment. This means that varying the « length
of the L;; segment arbitrarily and the position & of the observation point in accordance with the y =,
the Cj; value evaluated for these two different geometrical configuration will be the same. So these
geometrical configurations which satisfy the y =const relation can be considered equivalent. Let be
Lij = AB where A(0,-1,0), B(0,1,0). We perform the investigation of numerical stability of analytical
formulas of Cj; (Table 4) by setting 4640 points around the boundary of domain of definition (L edge)
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and distant points from it. We fixed five points, from which three points (0,0.5,0),(0,1,0),(0,-1,0) were
situated on the L;; segment (boundary of domain of definition of Cj;) and two points (0,1.5,0),(0,-1.5,0)
were situated on the exterior of the L;; segment. We take lines (in total 29 lines), which have different
gradients (d) and pass through the fixed limit point Po. Po +d-a is then the coordinates of points
situated on these lines with d chosen as ((0,0,1), (-1,0,0), (-1,0,1), (0,£1,0), (-1,+1,0), (+1,£1,1)), and
a=2k-10", where n varies between 8 and 25 and ke{5,4,3,2,1}. In case of larger n the point Po+d-a
moves away from Py, in the contrary case Po+d-a approaches Po. For the numerical investigation all
computations were effectuated in double and quad precision. Stability problems arise both in distant
points from Lj;, (y <<1) and points near to Ljj (»>>1). Due to the configuration of these 4640 points,
in our investigation the lower limit of y was ymin = 2-10°°, the upper limit of y was jmax = 10%. In our
earlier works (Benedek 2004, Benedek and Papp 2009) and a recent work (Benedek et al. 2018) in
case of the applied local and regional model computations the limits of y are situated between:
yredl ~ 2000 and y7ee ~15.10~*, which do not exceed the jmin=2-10°and ymin = 10% limits.

In case of quad precision computation the first 24 decimals are identical for ij"h“”"“3 and
Cfietstei™ (Table 4) in the 4640 observation points which cover the investigated » e (210, 10%)

3 i . . . . -
range. So CZ"““""“ and C{j-‘”sw”‘ values coincide up to 24 decimal places on their common domain
of definition. Accordingly in the course of numerical investigation we have considered as reference

.. 3 ; . .
values the quad precision computed ij"h“”"“ and ij-"l“e‘” (notated by 6 indices) compared to

ici indi Pohanka® Holst
double precision values (notated by rs indices). The statement that (Cf2""ke )rléand (Cptotstein e

can be considered as reference values is supported by the fact that in case of far computation points
characterized with y € (2-10°%, 5) the limit of these values are equal up to 24 decimal digits with quad

precision Taylor series approximation (5 (Table 4). When performing the same calculation

ij.ny=30 )1 6
in double precision we produce an approximation which is correct up to 16 decimal digits of accuracy.
The values of C’i’j"h“""“3 and Cji'ste™ near to the polyhedron and characterized by y >>1 are
numerically stable, because in these formulas in the numerator of logarithmic terms we can find the
sum of the same order of magnitude quantities (r2j and |l2;| and respectively ri; and |l4), whereas in
case of Pohanka®, Pohanka?, HPGL analytical formulas (Table 4) appear the difference of these
quantities. Based on quad computation Pohanka®, Pohanka?, HPGL formulas numerically are stable
on y e (2-10°, 10'6). In double precision evaluation the numerical instability occurs for y > 107. In

HWS formula (Table 4) the A, = ﬁ quantity will converge to the value 1 if the computation
2i 1ij
point approaches the [AB] segment, therefore the denominator of HWS (logarithmic term of Aj) will
become numerically unstable in the near area of [AB]. In case of computation of quad precision the
numerical instability arises for points close to the segment AB characterized with y> 10%. In case of
computation of double precision the corresponding domain will be y >107. Out of points of AB
segment (R®\ [AB]) HWS formula is stable on the feasible maximum domain y € (min=2-10", jmax= 10%).
From the numerical value of quad precision computed Cj; we can conclude:
Comparing in domain y € (2-10°, 10% each computes (Ci)rs With the chosen reference values

Pohanka® Holstei ; ; ; .
(Cfphanka )rlGand (Clotstetn 1 We can conclude that they are practically identical (to 24 digits

after the decimal point). In the y e (105 10° domain the absolute value of difference of these

quantities is less than 1076, in case of the y e (10°, 10%®) domain the difference between the computed

and reference value is less than 108, while on y e (10%3, 10%°) the difference is less than 102,
Similarly from the double precision computation we can state:

The difference between the identical two reference values (C[°"ema®) and (Cloiten)  and

r16 J r16
(Cﬁ’j"h‘m"“s})r8 and (Cfj°**™)  values are less than 107° on the y e (10°, 10%) domain, on the

y e (104, 10%) domain the difference is less than 1012, and furthermore on the y e (2-10°, 10**) domain
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the difference is less than 108, Near to the segment AB characterized by the inequality y e (103, 105)
the rest of formulas (Cij)is (Pohdnka®, Pohanka?, HPGL, HWS) will approach the exact value less than
108, in case of observation points more closely approaching (y e (10°, 107)) the segment AB the
difference will be less than 104,

If the computation point converges to the source model the numerical error begins to dominate
the Cjj and these formulas will become numerically unstable and the relative error will be growing.
For example if the observation point satisfies the y =~ 10 condition, the relative error of

(Cf}"”“""“3)rs, ((Iﬁ"l“ei”)r8 formulas will attain 1%. The 1% limit of relative error in case of the
(cpiwsen . formula will appear when the observation point satisfies the 7~ 10% condition. In case
1 2 . .. .

of the (Cfprenka”) . (ciphane™) and (CiPe") _ formulas this limit will be at y~ 5-10°

If the observation point moves away from [AB] the C;; value will converge to 0 (lim0 C, =0),

=0 °
otherwise if the observation point approaches [AB] the Cjjwill converge to infinity lim C; = (Fig. 9,
Yoo

Table 2). In other points of space (R® \ [AB]) the limit of Cj exists and is finite, i.e.
C, € R (Fig. 9, Table 2). In order to justify this we consider the following relation:

M—>M,M,eR*\[4B]

[Ny 1+A ., L.
Clywszln 2ij lij L - In ij ’ where Ai' — i _ AB <1.
/ Py + 1y =1, 1-A, y ryy +1y;  MA+MB

i

If the observation point M moves away from the [AB] segment, then A;—0, which implies

=0 1 A0 -
ij

1+A;
lim C,, = lim ln[ A”J:O, otherwise if the point M approaches the [AB] segment, then Aj;—1 and

1+Al.j

accordingly lim C;, =/l\im1h1[ J=00. If the M point approaches the My € R®\ [AB] point, then
7w i i

MH—IRIOAy < (0’1)’ thus M

The h;;Cij term appears in the analytical formulas of gravitational potential and its first derivatives.
If the observation point is approaching the [AB] segment, then the value of h;;C;; scalar product will
converge to 0 (Fig. 9, Table 2). This can be seen based on the following inequalities:

C, €R (Table 2).

—M,,M,eR*|[4B]

. . 1+A, , 1+A, ) 1—(A/./.)2 1+A,
0< lim |f,C,| = lim |, In| —— | < lim r,;;In A< lim " I L1=0. (194)
Ayl Ayl I=A; ) A ! 1-A; ) A ’ 2A; 1-A;
At this point we make use of inequality (31) given by Holstein (2003):
1-(A, )
|hij| < r()zfj < lzjj TUJ and (195)
%y’hlyzO,rGRH (196)

from which we can deduce the limit: ]Aj,fﬂlllf/’“_i[\a‘ iln(l—A{./):O. (195) follows from relations:
lZij _llij| .

The following inequality shows that if the observation point M moves away from [AB] segment, then
| hiiCijl will be less than the length of segment (Fig. 10, Table 2):

2_ 2 2 _2 2 _
Iy =Ty —hy =1 =1y and ;=
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. . 1+A, ) 1+A,) . 1-(A,F (1+a,
0< fim |A,C,| < lim |, In| — | < lim r,,; In| — < Tim £, In AR
A0 A;—0 I_Aij Ay—0 v 1-A A—0 Y 2A 1-A

ij ij

1 tim MYy =g (197)

TSy —1 i

In order to demonstrate this one, we use the fact that the observation point M moves away from [AB]

1+4, I : .
then y = . Aj — 1. The limit hml—y =1 can be demonstrated using the 1’Hospital theorem. If
-A, 1y —
the observation point M approaches a point situated on the line AB but outside the [AB] segment then

h;C; =0 (Fig. 10, Table 2). For Mo € R%AB we have:  lim  /,C, eR\{0}. The

lim N )
M—MeaB\[4B] ¥ MoMyer34B 7Y

behaviour of the Cj;, h;iC;; functions and their limits in the limit points of the domain of definition are
summarized in Table 2.

100,000 10,000
-
- T 1,000
10,000
-+ 0,100
z
1,000 ° . . .
3 4 5 0,010
0,100 ° 0,001
—— Cj —=— |hij Cij|

Fig. 9 The variation of Cjand |hijCi,- \ along the M(-z, 0.5, z) points which are situated on the line (d: 0.5=y,x+z=0 <
M(-z, 0.5, z)) perpendicular to L;=[AB] segment (A=(0,1,0), B=(0,-1,0)). The values of the functions are in the logarithmic

scale. The value of y accordingly with its definition is y = \/Ez" . If the observation point M(-z, 0.5, z) approaches the
Mo(0, 0.5, 0) point situated on the segment [AB], then z—0 and lli‘[(l) C;=lm C; =, llil’é h;Cy = }grolo h;C; =0 (where h;;

yo®

. . . i AB
is the projection of M point to the z = 0). A; = —>—= VAT B
Iy th +

<1. If the observation point M moves away from the

[AB] segment then |z} and  lim C; = lim C; =0, lim |, ;| = lim |, C,;|=1<2=1,
| vooys0 Y [EE A BN ) B /

Jo
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10,000
1,000 ——® ‘ ‘ ‘ L ‘
5 10 15 20 25 30 35 40 45 50 5
0,100
0,010
— Ci] —a— ‘ hlj CI] |

Fig. 10 The variation of C;;and \hijci,~|along the M(-z, z+1.5, z) points which are situated on a line (d: -x = y-15=z <
M(-z, z+1.5, z)). The values of the functions are in the logarithmic scale. The value of y accordingly with its definition is

Y= \/Ez" . If the observation point M(-z, z+1.5, z) approaches the My(0, 1.5, 0) the common point of segment [AB] and the
plane z=0, then z—0 and lgno C;=1lim C; =, 1133) G, = ylm h,C,; =0 (where h is the projection of M point to the  z

7> o

= 0). If the observation point M moves away from the [AB] segment then |z»c and lim C; =lim C, =0 ,

EEX 70

tim [, C,|=tim |1, ;=1 <2=1,

|z|>

Table 2. The limits of the Cj,and h;C;; functions

constant investigated domain | limit explanation
Ci [AB]=[AiAij+] o My e[4B], lim C;=co
AB\[AB] In|t, /1 M, e 4B\[4B)],
RAAB eR M,e4B, lim C, eR
70 0 dist(M.[4B]) > oo, lim C; =0
7
h;iCij [AB]=[AjjAj+1] 0 M. e [AB] lim 4.C.=0
0 ' MM, /)
AB\[AB] 0 M,  AB) [AB] , M]ii?% h[jq.j. =0
RAAB R0} M,e 4B, lim hC,eRI{0}
M-M,
>0 <R dist(M [4B]) > oo, tim|n,C, | € [0.1,]
P A i
},iff(}|ha'ci/| € [0’ 1,,]

2. Numerical investigation of analytical functions of Q;j, Qi

We have constrained the numerical investigation of Q; to a single S; triangular face, similarly we
constrained the investigation of Q; to a single edge of S; namely to the Aiy (Fig. 3). Without
constraining the generality let be S; = [A;A,A;]l = [ABC], where A(0,-1,0), B(0,1,0), C(1,0,0).
Accordingly A,,,, = [MiAB], A,,,; = [MiBC], A,,,;, = [MiCA], where M; is the projection of M to S;
plane. We assign the value o = 2 to S;j= [ABC] and we denote with Sthe distance of observation point
and the centroid of S;. The analytical formulas of Qj;, Q; were evaluated near to the limit points of
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their domains of definition and in points away from the triangular face S;, in total 8510 points (Table 4).
Similar to numerical investigations performed for Cj; the Q;j, Qi formulas where evaluated on lines
with different directions (30 lines) around the (0,0.5,0), (0,1,0), (0,1.5,0), (0.5, 0,0) (-1,0.5,0) limit
points. The computations were effectuated in double and quad precision. The numerical instability
problems arise when the observation point is away from the S; face (y << 1) and near to the S; face
(y>> 1). From computation of quad precision we state ymax= 10%, and ymin= 1.5-10"°.

Moving away with the observation point from the S; face the limits of Q;, Qi and hiQ; are 0
(Fig. 11, Fig. 12, Fig. 14, Fig. 15, Fig. 17, Fig. 18, Fig. 20, Fig. 21), whereas the limit of h;Q;; depends
on the direction of approaching the line (Fig. 13, 16, 19).

On the [AB], [BC], [AC] edges of S; = [ABC] face Qjj and Q; are not defined (Table 4). The inner
points of this face are points of discontinuity of the second kind or essential discontinuity of Q; since
the limit in these points are functions of the direction of the approaching line (Fig. 20, Table 3).

Qi is continuous in the R®\'S; domain. The limit at points adherent to set s\ S; i.e. belonging to the
s plane defined by the ABC face without the points of the S; face is 0 (Fig. 15, Fig. 18 and Table 3).

The points of plane s are discontinuous of the second kind for Q (Fig. 12, Fig. 15, Fig. 18),
whereas on R®\ s points Qj is continuous (Table 3).

The hiC;j, hiQ; are continuous in all space. In the special case when the observation point belongs
to s, the limit of h;Q;; and hiQ; is 0 (Fig. 11, Fig. 13, Fig. 14, Fg. 16, Fig. 17, Fig. 19, Fig. 21, Table 3),
i.e., hiQij, hiQi —0 if h; —>0.

We will justify our statements below. Moving away with the observation point from the S; face is
evident from geometrical interpretation of Q, Q; that the limit of these expressions will be 0. This
affirmation can be demonstrated directly starting with identity (73):

2h.l.

g)l.b.ahanka3 :2 : h t vy s here l :l . —l
! sienlh an(”zlj+r1zf)z_Z;J“z(rzzj“’lif)m " v

1ij

1_(Aij)z :

L. AB
Using the A, = Y = notation and the inequality |.. <.
2 1_(Ai/‘)2

o< 2h,1, |S 2, o, A A
|(”2z‘/+r1f/)2_l;'?+2(’”2;7+”117)hz‘|| (sz‘/“’lzy)z_lf/z‘ 1-A; \/1—(Al.f)z

(198)

For distant points from S; it holds A;j—0, and for this reason Q;;—0. Since Q; is the sum of Q;; we can
conclude that Q; —0 if Aj—0 (Table 3).

Approaching the plane s, then h; —0. Since Qjjis a bounded function (|€;/<2m) then hiQ; and
hiQi—0, if hy -0 (Table 3).

Moving away with the observation point from the S; face along a d line, then h; —co or hj; —>co.
We examined the following cases:
1. d is perpendicular to the plane s (d L s) < Z(d, s) = n/2. Then |hijj—o0 and h;; will be a bounded
quantities. Using (197):

Pohanka® 2hiflii
hQ =2|h;|atan . (199)
(rZi/'+r1if)z_lli/'+2(r2£/'+r1ii]hi|
. . . ... atanx
the argument of the atan function will converge to 0. Based on the well-known limit lm% =1
X x

and the following inequality:
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L

0< lim [nQ,|= lim
! ‘h ‘ﬁw (r2t + rllj)z 12 + 2(r2t'j + rlij)hi| ‘h"ﬁw rzl/ + r]l/

‘h, ‘aoo

=0 (200)

we can conclude:

lim AQ, =0. (201)

‘h ‘Hoc

L;
In (200) we use the inequality (r,, +7, )/A <2 and the limit lim —-=0. Whereas ; is the sum of

‘1‘4>ao| |

the Q;j belonging to the face i, from (201) we get the following limit: lim 4, =0.

|0

2. If £(d,s)=0, i.e. d || s then follows that |hjj/—co and h; is bonded, which assures the convergence to
0 of argument of the atan function: h‘m hQ,; =0 and ‘hlu‘n hQ,=0.

3. If £(d,s)e(0,42), then it holds |hijj|—> and |hi|—o. We introduce the parameter m=tan(d,s) and the
notations d =proj,d and Mo = drs. In the s plane we take the (Mo, x;, y) local coordinate system, where
the x”axis coincides with the d”’line and its direction is identical with the moving point direction. Let
@ be the rotation angle between the (O, x, y) and (Mo, X, y) coordinate systems. The equation defining
this transformation, which rotates the xy axes counter clockwise through an angle ¢ into the X'y’ axes

y —sin@ cose || y
limit is independent from the coordinate system, so without limiting the generality the calculations
are effectuated in the (x y z) coordinate system. For |hjj—co the argument of the atan function in
expression of Q;; will converge to 0 and the 0 - oo indeterminate form will arise for hiQ;j. According

to lim 220Y atan y
-0 y

X COs@ sm@ | x| |X . ) . .
is: | L= . + b | (hi/m, 0, hy) is the coordinate of the observation point. The hiC;;
0

=1, we can write the following identity:

|Sin ‘/’(xzv' - xli/’)_ COS(/’(J’ZU - yli/’] B |y;1ﬁ/’ - y{l-,-|

lim [, 0, | = = .
‘h“%J j| |m|(1+r;f2 +\/1+m’2) |m|(1+nf2 +\/l+m’2)

(202) shows that hi€;j has a limit which depends on the direction of d denoted by m (Fig. 13, Fig. 16,
Fig. 19). Using (202) we can deduce the limit of hiQ; as follows:

(202)

lim AQ, = lim hQ — sign(h,) hm2s1gn( Q,|he,|=

‘h‘—)m [y >0

=sign(h,) 3 sign(@,) s~

/|m|(1+nf2 +\/1+m’2) I

If Si is positive oriented then sign(QU):—sign(y;U—yl'ij). Thus:

. sign(h, ) 3
lim 7,0, = (y i = Vi )
il |m|[1+m +Vl+m” )Z‘: v

Furthermore we investigated the limit of Q; in points of plane s. We consider the (125) expression
of Qi

WS _
Q" =2atan 2(1’1 (r2 XF, ),rlrzr3 +nRrr 10 +r3r1r2).
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We can distinguish three cases: (1) Moe s\Si, (2) Mg € S; and (3) Mo €8S;. If the observation point M
converges to (1) Moe s\S;, then

a By
0,00 000 0,00 0.0.0 _ 0,00
KhT + R + LR BRI, S KL R B L6 R =451 COSECOSECOSE, (203)

where 1 =M A, ) =M,B, r} =M,C, a, B,y are the angles between the vectors ’and r, , r,

andr,, r’and r, successively, i.e. a=2£(r’ 1)<z, B=L(r) r)<r, y= (1)) < . Since

Mo e s\S;, the maximum of ¢, Sand y angles will equal the sum of the other two, thus:

0.0 B /4

ar"r)r, cos%coszcos5>0 . (204)

If we approach the point Mg € s\ S; along points situated outside of the plane s (M e R®\'s), then

: 0f.,,0 0
lim r](r2><r3):rl (r2 X1y )=0.

M—>Mes/S;
If we approach the point Mo € s along points in s then r, (r2 X r3)= 0 and holds:

lim Q=2 lim atan2(r(r, x 1 ) 1iryry +1ry, + BBE + 1518 ) =0 (205)

M—Mes/S; ! M—Mes!S;

If Mo is situated inside of Sj, i.e. MoeInt(S;), then for the angles «, §, y it holds that a + g+ y = 27,
thus:

0.0 ﬁ

4r’r)r, cos%cos—cosz<0 . (206)

If Mo is situated on boundary of S;, i.e. MoedS; then one of the angles ¢, g, y takes the value 7, thus:

4'r)r) cosgcosﬁcoszzo . (207)
2 2 2
Based on (203), (206) and (207):
i ( )= 0if M,eds, -
M obes, nhly thnh+hLhGs+nh )= <OifMoeInt(S,.)' (208)

The limit of the scalar triple product is:

: 0 if Mes
e )_{sign(n(rzxa )-0if Mes 209

By right of the (208), (209) relations we have:

lim
M—MeS;

2atan(f(m)) if M,edS,,(d,s)e {o,

DN oy

Q, ={sign(r(r, xr)) 7 if M,<€8S,,(d,s)e|0,

M—>M,eS,

)
j , (210)

sign(r (r, x 1)) 7 if M, € Int(S,

where m is the tangent of the angle between the line d and plane s, i.e. m = tan(d,s). f(m) is the
expression of indeterminate form 0/0 changing as a function of m, that is the directional derivatives
(Fig. 19). In order to evaluate the expression of f(m) we define a local coordinate system in the s plane
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with the origin in (Mo, X y), where x”is identical with d' = proj, d and is assumed to coincide with
the direction of the moving observation point. Let (xl’l.j, yl’ij) and (x;,.j., y;ij) be the coordinates in this

local system of vertices of the j"(j = l,_3) edge of 8Si. f(m) is independent of the chosen local frame.
The following formula can be demonstrated simply:

r
lej xlx/ yle Yy
’
x}ij xu/ y3ij Wiij

2 12 12 ! ! ! ’
3 x'.(x' + X Xx +x7 ) 3 x..(xv Xiio F Vi ) 3
17 W T X AMgia T Xigian 15 Wi X2 T VignVigae [, (o /
> +2 - - +2 Xy T Vg (xwu + xlij+2)
:] P o

/ '\/(’xlx + yly Xxlwl + y1y+l Xxlwz + y1y+2) \/(xuj + .ylij)

51gn( (r XF ))

f(m)=

(211).

The numerical stability of Q; was analyzed in 8510 points fulfilling the relation y € (in, Jmax) =
(1.5-10°, 10%). The values of Q; obtained from quad precision computation were considered as
reference.

In the distant domain characterized with y> 1.5-10® and R3\ s the Q;values will be erroneous due
to the numerical error. Moving away from S; the limit of Q; is 0, between the y < 1.5-10° and

yin = 1.5-10°° region the absolute error of Qi is characterized as |(AQ,), | <107"°. The limit of

errorless values of Qi computed with double precision is y < 3.5-10°%, if ¥ € (jmin, 3.5-10%) then the
absolute error of Q; is |(AQZ. ), ", In case of distant points situated in plane s the absolute error

<107 and |(AQ,),

of Qi computed with double and quad precision is [(AC,),

successively.
When the computation point is situated outside the plane s and approaches a point in this plane

then € computed with quad precision satisfies [(AC,) <107 in computation points
characterized with y € (1.5-10%, 5-10%). Inthe y (510, 1.5:10%) domain we have |(A, ), <107**
, in the y e (1.5-10%, 1.5-10'%) domain stands the |(AQ,. r16|<10’16 relation, in the y e (1.5-10%,
4.10%) domain the |(AQ,), | <107 and in the y € (4-10°, ymw) domain the |(AQ,),, | <107

inequalities are holding. The same computation in double precision gives the fpllowing results:
[(AQ,), 4| <107 in the y € (3.5-10°%, 5:10*) domain, |(AQ,),,| <107 in the y € (5:10%, 3-10?)

<107 inthe y e (1.5-10%,

domain, |(AQ,),,,
1.5:10°) and [(AQY,)

characterized by y e (1.5-10, ymax) the numerical errors will dominate the true value of ;.

The magnitude of relative error in case of Q; computed with double precision both in near and far
field regions from the polyhedron can reach the value 100%. In far field points from the polyhedron
defined successively by relations (1) y~ 10 the relative error is around 1%, (2) y~ 107 the relative
error can reach the value 100%. In near field points from the polyhedron satisfying the y =~ 1.5-10%
relation the relative error can reach 1%.

If the observation point is situated in the s\S; domain and near to lines which define the boundary
triangle face S; then the value of Q; computed with double precision in these points can be compared
with its theoretical value Qi = 0 in the limit point. From this comparison we can conclude that the

absolute error in observation points characterized by 7 € (i, 10%) fulfils |(AQ;), | <107,

<107 in the y  (3-10%, 1.5-10*) domain, |(AC,)

rl6

<10™ in the y e (1.5-10%, 1.5-10'") domain. In observation points

rl6

whereas in the y € (min, 7max) domain it holds that |(AQ, ) , [ <107 . In the domain » < 1.5-10° for O

computed with double precision it holds that [(AC, ) ;| <107 . However in the »> 1.5-10° domain O

Geomatikai Kozlemények X1X, 2016



70 J BENEDEK

is dominated by numerical error. In the y e (1.5-10%, ymax) domain the Holstein?, Holstein?, Holstein®
(Table 4) are identically zero, so they coincide with the theoretical value, as against the expression of
Werner and Scheeres becomes indefinite.

Finally if the observation point is situated in plane s and converges to a point in s\S;, the absolute

error can be characterized by inequalities [(AC,), | <107* and respectively |(AQ;),,,| <107 in

case of quad and double precision. The results concerning the limit of Q;;, O, hiQj;and hiQ; we have
summarized in Table 3.

Based on the investigated limit of the Cj;, h;iC;;, Qij, Qi, hiQjj and hiQ; functions we can derive the
limits of gravitational potential and its first and second derivatives in the limit points of the domain
of definition. Based on formulas (176) and (178) the analytical expressions of potential and its first
derivatives consists only of the h;;C;; and h;Q; terms, which have finite limits in every point of space.
In the concrete case when Az, < S, and the observation point M approaches Mo:

lim U(M)= lim G”OZh[lﬁhUc hQJ

M—-M, M—M, P =
Gp, < 0] Gpo ) 1Gy) Gpo 0]
== > h, ZhUC -hQ, Jim B, Zh,j Coy = | == Z h; ZhUC -hQ,
i=Li#i, i=L,i#i,

n 1(i)
Jim v, U(M)=~Gp, lm Zn (ZhUC hQ]

1(i) 1(iy)
=-Gp, Z (ZhUC -hQ, }rc;po [Zhwcw 5 ]=
j=1

i=L,i#i,
n 1) 1)
=—Gp, IZ [Zh,jc -hQ, ]+ Gpon, (Z;b,}_ ; ]
i=L,i#i, J=

(i
MHE;I}/[UUI{I( ) GIDO hm zn ﬁvljclj _n Q =

M—M, i1 =

i)

n i
=Gp, Z nt ﬁvij[j—an +Gp, ]Jm ni(Zvl[w lu]—ni’OQ%J:

i=Lii, j=1

n (i
=Gp, Y. n! ﬁviljcij_nilg +Gpyn ksz ivg Gpon:n:M]j%OQ" '

0
i=L,ii, j=1

We made use of the following relations valid for M, € S, :

lim £, =b,,; eRJ—le,hth =0, lim A =0.

MM, o ’J M—M, '

On this basis the gravitational potential and its first derivatives have a finite limit in any Mg point
situated on the .S; face of the polyhedron. Due to the fact that Q; has a jump discontinuity at any point

of .S, (Table 3) the second derivatives of potential likewise will have a jump discontinuity in these
points.
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Fig. 11 Let S;=[ABC] (A = (0,1,0), B = (0,-1,0), C = (1,0,0)) be the face of the polyhedron and let M, (0.5,0,0) e S; be a point
of Si. The values Q;and hiQ; are computed on the points M(0.5-z, z, z) situated along the line d: 0.5-x =y =z < M(0.5-z, 2, 2)
and converging to the point M, (0.5,0,0) € S; (M — Mo). Then we have z — 0 and lim Q,=-27, lim Q, =27,

z0,z>0 z—0,2<0

lim A,Q; =0. If the observation point M moves away from Mo then it holds that z}>o and lim Q, = lim /,Q, =0

20 |z|> |z

2,5

2,0

15

1,0

0,5

L — UL

-10

Qi Qp —-m—— Qp

Fig. 12 Let S;= [ABC] (A = (0,1,0), B = (0,-1,0), C = (1,0,0)) be the face of the polyhedron and let M, (0.5,0,0) € S; be a point
of S;. The values Q;;, j=1,3 are computed on points M(0.5-z, z, z) situated along the line d: 0.5-x =y = z < M(0.5-z, z, z) and
converging to the point My(0.5,0,0)e Si (M — Mg). Then we have z — 0 and lim Q, =-a, liorgoQ“ =a, Lignlon:_b ,

z—0,z>0

lim Q,=b, lim O, =—c, limQ,=c,where a=tan(4ARB), b=c=tan(BRC), a+ b +c=2x. If the observation point M

250,20 250,2<

moves away from My then it holds that |z]—cc and ‘l‘im Q,;=0,j= 13
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— hiQu - - hiQp “mm=mhi Qi

Fig. 13 Let S;=[ABC] (A = (0,1,0), B = (0,-1,0), C = (1,0,0)) be the face of the polyhedron and let M, (0.5,0,0) e S; be a point
of Si. The value hiQ;, j=1,3 are computed in points M(0.5-z, z, z) situated along the line d: 0.5-x =y = z < M(0.5-z, z, z) and

converging to the point My(0.5,0,0)e S; (M — Mo). Then we have z — 0 and lingQU. =0,/ =1,_3 . If the observation point M

moves away from M, then it holds that [z]>co and based on (201) it holds that lim |h, Q,|=/, , lim | Q,|=1, ,

ZIEB |hi in:lzv L=l =(37‘/§)/3 13=0, (m:\/E/Z,yl' :*\/5/433’; :3\/5/4’)/; :7‘/5/4)

7\ .

/)

/ \,\,, 03

/ \\\

e
3 : i W

0,1

oY

— O —— hiQi

Fig. 14 Let Si= [ABC] (A = (0,1,0), B = (0,-1,0), C = (1,0,0)) be the face of the polyhedron and let M, (-1,0.5,0) € Ext(S;) be a
point in exterior domain of S;. The values Q;and hiQ; are computed on the points M(-1 - z, 0.5, z) situated along the lined: y =
05,x+z+1=0< M(-1 -z 0.5, z) and converging to the point Mo(-1,0.5,0)e Ext(S;) (M — Mo). Then we have z — 0 and
lin% Q=0 , 1im0 hQ, =0 . If the observation point M moves away from My then it holds that |z}—>o and
Z>! z—

lim Q; = lim A,Q, =0

|z[> |z|>»
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—— Q1 e 0 Qi ——E- Qiz

Fig. 15 Let S;=[ABC] (A = (0,1,0), B = (0,-1,0), C = (1,0,0)) be the face of the polyhedron and let M, (-1,0.5,0) € Ext(S;) be a
point in exterior domain of S;. The values Q;, j=1,3 are computed on the points M(-1 - z, 0.5, z) situated along the line
d:y=05x+z+1=0< M(-1 -z 0.5, z) and converging to the point Mo(-1,0.5,0)e Ext(S;) (M — My). Then we have

lim Q,=a, lim Q,=-a, lim Q,=-b, lim Q,=>b, lim Q,=—, lim Q;=c, a=ZLAP,B, b=/BP,C,

z—0,2>0 z—0,z<0 z—0,2>0 z—0,2<0 z—0,z>0 z—0,2<0

c=ZCPoA, b + ¢ = a. If the observation point M moves away from M, then it holds that |z|— and ‘lim Q;=0,j= 1,_3

[

0,6
1&\
Vad - 04
\/ A | e —
# N A 0.2
ARV, Z
l”
- / \Ql
: — — : : 0,0
N z T /
5 4 2 \ 2 4
.——'"”/ f”’/
T I\
\\'\_‘\ o
ag -0,6
— hQy i Q. —— hi Qi

Fig. 16 Let S;= [ABC] (A = (0,1,0), B = (0,-1,0), C = (1,0,0)) be the face of the polyhedron and let M, (-1,0.5,0) e Ext(S;) be a
point in exterior domain of S;. The values hiQ;;, j=1,3 are computed on the points M(-1 - z, 0.5, z) situated along the line
d:y=05x+z+1=0< M(-1-2 0.5, z) and converging to the point Mo(-1,0.5,0)e Ext(S;) (M — Mo). Then we have z — 0

and ling hQ,; =0,j= 1,_3 . If the observation point M moves away from Mo then it holds that |z—o and based on (201) we have

lim Q] =4, lim |hQ,|=1,, lim |hl.Ql.3|:l3.l,:27\/5,12:13:(27\/5)/2 (m=1,y/=—0.5,, =15, =0.5 )
Z—0 Z—0 Z—0
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Qi —— hQ

Fig. 17 Let Si= [ABC] (A = (0,1,0), B = (0,-1,0), C = (1,0,0)) be the face of the polyhedron and let M, (0,1.5,0) € Ext(S;) be a

point in exterior domain of S;. The values Q;and hiQ; are computed ont the points M(0, 1.5, z) situated along the line d: x =0,

y =15 < M(0, 1.5, z) and converging to My(0,1.5,0)e Ext(Si) point (M — Mo). Then we have z — 0 and lingQ,. =0,
o

lin(}h[Q‘. =0 . If the observation point M moves away from My then it holds that [z]—c and ‘l‘im Q, :‘l‘im h€,; =0
Z> z| > z|>wo
0,6
7
4
- d
o S 0,4
e 4
e 02
z T ]
______________________ 4 ——— oo ¢ 0,0
s 2T el 1 2 ]
T e 02
’,4"'
. 0,4
»
NPV 4
"4 0,6
—r— Qi ——e-Qp - Qp

Fig. 18 Let Si= [ABC] (A = (0,1,0), B = (0,-1,0), C = (1,0,0)) be the face of the polyhedron and let M, (0,1.5,0) € Ext(S;) be a
point in exterior of S;. The values Qj, j=1,3 are computed on the points M(0, 1.5, z) situated along the lined: x=0,y =15 <

M(0, 1.5, z) and converging to the point Mq(0,1.5,0)e Ext(S)) (M — Mo). Then we have z — 0 and ling Q,=0,

lim Q,=-a,
2z-0,2>0

lim Q,=a,

z—0,z<0

lim Q;=-a,
z-0,2>0

lim Q, =—a . If the observation point M moves away from M, then

z0,2<0

it holds that [zl->0 and lim @, =0,/ = 13
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Fig. 19 Let Si= [ABC] (A = (0,1,0), B = (0,-1,0), C = (1,0,0)) be the face of the polyhedron and let M, (0,1.5,0) € Ext(S;) be a
point in exterior domain of S;. The value hi(y;, j=1,3 are computed on the points M(0, 1.5, z) situated along the line d: x =0,
y = 15 & M(0, 1.5, z) and converging to the point My(0,1.5,0)e Ext(S) (M — M,). Then we have z — 0 and
limhQ,; =0, )= 1,_3 . If the observation point M moves away from Mg then it stands |z|—< and considering (201) then it holds

z-0

that lim4,Q, =0,/ =13

z0

— 5
&
> ’/ 3
A
&

‘M !
£ 7 1 ? _ / - 1
-3
/ .5
-7

—— Qi(M(0,0,2)) —Y— Qi (M(-z,0.5,2)) —e— Q;(d:z=0,x+y=0.5) —A— Qi(M(-z,2+0.5,2))

Fig. 20 Let S;= [ABC] (A = (0,1,0), B = (0,-1,0), C = (1,0,0)) be the face of the polyhedron and let M, (0,0.5,0) € (AB) be a
point of S;i. The value Q; are computed on the points M situated along the lines (1) d;: x =0, y = 0.5 < M(0, 0.5, z), (2) d:
y=05x+z2=0< M(-z,05,2), 3)ds: z=0,x+y=0.5, (4) dg: -x =y - 0.5 =z < M(-z, 0.5 + z, z). We denote with d,
k =1,_4the unit vectors belonging to di, d,, ds, ds. These vectors are successively (0,0,1) (diL Sy, (-1,0,1), (-1,1,0), (-1,1,1).
Converging to My(0,1.5,0) with the observation point M (M — M) we have z — 0 and considering (209) the limit of Q; depends
on the direction of the line so we get successively (1) di: zl%T>oQi =—r, lim Q, =7, (2) d ZL%T>OQi =-z/2,

z—0,z<0

lim Q,=-7/2, (3) da: liom OQ,. =27, lim Q,=0 and (4) d.: liom OQ,. =0, liomon =37/2 . If the observation
x—0,z> x—0,x<! 20,z<

z0,z>0 x—0,x<0

point M moves away from My then it holds that |z|—- and ‘l‘im Q=0
z|>0
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A 1,0
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0,8
ay)
AN \ PN 0,6
// ) \\ 0,4
i o 0,2
L A oo
‘/A 4 A ) e —
p ” ® 0,0
5 Z -4 2 2 4

—+— Qi (M(0,0,2))

Fig. 21 Let S;j= [ABC] (A = (0,1,0), B = (0,-1,0), C = (1,0,0)) be the face of the polyhedron and let M, (0,0.5,0) € (AB). The
value hiQ; are computed on the points M situated along the lines (1) di: x =0,y =0.5< M(0, 0.5, 2), (2) d: y =0.5,x+z=0
& M(-2,05,2),(3)d;:z=0,x+y =05, (4) d: -x =y -05 =z < M(-z, 0.5 + z, z). Converging to the point My(0,0.5,0)
(M — Mg) we have z — 0 and lim0 h,Q,; =0 . If the observation point M moves away from M then it holds that |z|—>o0 and

lim 7,Q, =0

|z[>=
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Table 3 Classification of limits of C;, Qi, hi€; and h;jQ;; functions

function |domain limit explanation
Q Si=[ABC] doesnotexist | pr cg 7 lim Q,
LR VAS VAR A
s\§; doesnotexist | ps 1§ 4 lim Q,
0=y o,
R3\s eR MOGRS\S, lim QUER
MM,
7 =0 0 dist (M, S,) >0 , lim ©,=0.
Qi Si=[ABC] does not exist

M,eS, . do? lim Q,,
MM,

Zatan(f(m)) if M, eaSi,(d,s)e{O,%[

lim Q, ={sign(h,) 7 if M,eds,

MM,

. d’s):

i

/a
2
sign(,)-27 if M, eInt(S,)

sign(h;)>0, if M and the normal vector of S; plane are in the same
subspace f(m) is defined by formula (210)

s\ 0 M, es\S,, lim Q=0
M-M,
R\s R M,eRls, lim Q eR.
M-M,,
70 0 dist (M., ) >0, lmQ, =0.
hQy  |Si=[ABC] 0 M, eS,, lim hQ, =0.
0 oMo, Y
S\S 0 M, es\S,, lim hQ, =0.
M-M,
R\s eR M,eR’s, lim hQ, eR.
M-M,,
y 0 does not exist | st (M,S, )—>c0, not Ilim 50,
hi Qi Si=[ABC] 0 M, €S, lim AQ, =0
M—M,
s\S 0 M, es|S,, lim hQ,=0.
—>M,
Ri\s <R M,<R\s, lim hQ, eR.
M-M,,
50 0 dist (M, S, )0, lim £ =0.
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Table 4 The analytical formulas of Cj;, Q; Pyj, Qjj, Ry given by different authors

Function

Analytical formula

Author

Domain of definition in the
maximal domain (Jmin, max) assigned
to the computations performed in
double precision

(}’min=2‘10-9y ;/max=1025) for Cij
(}’min:]- 5-10’9, ymax21025) for Qij

Pohanka®
ch

Pohanka?
ch

Pohanka®
ch

HPGL
ct

HWSch
c

Holstein
ctt

[inGr, +1);7

7

2ij

sign (12” )1

- [ll’] (r.w -l )];12,’,/

+|ZZ”| r, +|lm|

—sign (lm )ln Y

0if 0ij

In| T2y T My
Fy + 1y

where A; =
£}

sign (12,]. In

sign |/ ( 2

(”2:, +|[zl,|x Ny T m )
In| 22 =AY TV

+1,; 1+A,
Zll=In = | =2atanhA, ,
-1, 1-A,

Iy
i iy

<1.

Ty +|lz,/.|

if sign (lz,/): sign (lhj )
Ny +|111/|

if sign (1217 )¢ sign (l“f)

rOU
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Pohanka

Pohanka

Pohanka

Holstein,
Petrovic,
Gotze and
Lahmeyer

Holstein,

Werner
and

Scheeres

Holstein

MR A4, | .o

%
j=10)

Expression becomes indefinite on

st =l

j=11(0)
Out of this domain expression is
stable on: ymin<y<107.

dist[M,A, A4 ]<10 domain.

MeRN 4,4, min

J=1100)

Expression becomes indefinite on

dJst(M A, A, ]<10’R .
J=11()
Out of this domain expression is

stable on: ymin<y<10.

MeRA 4,4, i
Jj=11(0)
Expression becomes indefinite on

v J<109
i u(r)

ij+l 0=

10 25<dlst(M A4

MeRA4,4,, i

r:m
Expression becomes indefinite on

dlSt(M I j<10’8 .
J=110)
Out of this domain expression is

stable on: ymin <y <107.

MeR3\ [A,/ 4., ] i

J=L10)
Expression becomes indefinite on

dis{ MJ[4,.4, ],‘,J<10x
j=1L1()

In the surroundings of the segment
[AB] the expression is defined on

Jmin <]/<1O7-

Out of this domain expression is

stable on: ymin <y <Jmax-

MeRA[4, 4,

;:W

Expression is defined on

10’35<dist(M,Ai A, J<1o"’
0

j=1i

thus 0N Jin <y <Jmax domain.




(D]

ijno

Q'I"'ohanka1
i

Pohanka?
b

Pohanka®
of

Holstein!
off

Holstein?
off

Holstein?
of

Petrovic
Q;

Qg

WSsch
ﬂi

Pij
Qi

lij

. I
2 Z_(A")k , where A = —
A Ty + iy

k=1
I,

rMP*lJrlhil N
=

i

{2 sign (hi)atan

1]

1,
rMP+l+|h,.|]’
I,

i

- |:25ign (h,. )atan

1y

ZSign( atan 2h’(l7” l"’)
(r’l/ 1!/} ( 2 h/ + z(r"/ + rl!/ lh |

lZ'/
h.l
sign (%, )-| atan] ————
( ) ar{rozzy"'rMPlhil] ’

. thf(lzv ‘luj>
ZSlgn(hi)atan(’M 1 +dljxr2if 1y _dif)+2(r2ij’ +r1,»j]h,|

if sign (1,

. 21”1"(12,' _lh')
2 h‘ t 4 U i
sl an(’za' iy +dij)z/“i/ +2(’zi/ *rw‘lhrl

if sign(l,, )= sign ()

- [(’) hl 1:'7
zQi/ = —Z ata i +sign (1, )0,
= = rMPh:j ’

=sign (lhj

L,
@ P+ +ing ||
- |ata h‘h e +sign (4,)6,
=) i ,
1(i)-1
2 Zatan2(r] (rk XTi )7”1”krk+| T e F bl + Bealif
=

(xzu _xlu)lu ' (y2t/ _ylt/)lv ! (ZZU _th/)[u
P42rd +r2 +1 +r
1 it el thy 4 T hly
l—ln if ry +rgpy 20
1. =47 r|u'+r|{/"”i/
i
1 |l!/ _rlifl "
7= i 1y +hypy =0
i i
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Taylor
series

Pohanka

Pohanka

Pohanka

Holstein

Holstein

Holstein

Petrovié¢

Gotze and
Lahmeyer

Werner
and
Scheeres

Guptasarma
and Singh
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MeRA[4,4,., 1=

J=L1(i
Expression is defined on
Pmin<<Jnax dOmain.

MeRA 4,4,., | i
j=110)
Expression is defined on

Ynin< )< Jmax «

MeRA\[4,4,. | iz
j W

Expression is defined on
Tin<}<Y.
MeR: 4,4, iz

J=LIG)
Expression is defined on
Jin<y<1.5-10'

MeRAN 4,4, iin

=110
Expression is defined on
Jnin<y<1.5-10%

MeRA\ [4,4,., | i

j=Li(i
Expression is defined on
Jnin<y<1.5-10%° .

MeR\A A,

1 i=ln
=L

MeR\A A

i1 i<
J=LIG)

MeR\ S ,i=1,n
Expression is defined on
Ynin<y<1.5-101.
MeRN 4,4, iin

S A0
The formula becomes indefinite
in domain:

1st[M A A, i j<10’7
j=11(0)
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3. The analysis from numerical point of view of analytical formulas of gravitational potential and its
derivatives
Holstein and Ketteridge (1996) and Holstein et al. (1999) investigate the numerical stability of
analytical formulas of gravitational potential and its first derivatives in the far domain (distant points
from polyhedron). Numerical errors of analytical formulas for the gravity potential and its first and
second derivatives generated by a uniform polyhedral body increase with distance of observation
point while the magnitude of these quantities decreases to 0. Similarly in case of observation point
situated fairly near to polyhedron instead of convergence of analytical formulas to a real number
provided by the potential theory the formulas can return a NaN value. Therefore, a limited range (a
minimum for the observation points situated near to the target body and a maximum for the
observation points situated far from the target body) of target distances can be specified in which
domain the formulas are operational, beyond which the calculations are dominated by rounding error
or become indefinite. Let « be the target body dimension which is a number characterizing the
extension of a polyhedron body (e.g. the average of edges or the radius of inscribed or circumscribed
sphere or the average of these radii) and &the distance from the observation point. Their ratio y= /6
is a dimensionless quantity geometrically representing the inverse distance normalized with the
dimension of the body, which defines the angular extent of the polyhedron.

Following formula (Holstein et al. 1999, Eq. 71) gives the relation between y and the numerical
error of the first derivatives of the gravitational potential:

>(£100/p)" &5<—% | 212
72(100/p)" = (£100/ )" (12)

where p is percent of the rounding error, ¢is the floating-point precision and for vthe authors estimate
v = 4 based on model computation using a concave elementary body with 8 faces, 10 vertices and
with dimension a = 24. In case of applied double precision computation the value of gis 252~ 10°°,
For a required rounding error of p percent (212) gives the upper limit of target distance

- % __ below of which the percent of rounding error becomes less than p and above of

(£100/p)"
which the percent of rounding error becomes larger than p. In case of p = 100% and &=2°2 for y we
get as limit 7 = (v)=(£100/100)"" =272 ,

We repeat the investigation presented by Holstein et al. (1999) in double and quad precision and
complete with the same formulas concerning the gravitational potential and its second derivatives
(Table 5, 6, 7) using the same model. In these computations we considered v as unknown parameter,

the coordinates of observation points were chosen (x,y,z)=(d,d,0) where d =d(v)=35(v)/v2 [km],

max

5(v)=a/y(v)and y = y(v)=2"" The values of the parameter v are given in the first column of
Tables 5, 6, 7, the coordinates of observation points are given in the following three columns of the
tables. The computations were done in double and quad precision and these observation results are
given in the 6™ and 10™ columns.

The realistic density models applied both in the local and regional modelling (Benedek and Papp
2009, Benedek 2004) are built by different dimensions of volume elements (prisms or polyhedrons).
In case of applied regional models the minimum and maximum values for the « parameter were found
(amodel) ,;, = 250 M, (amoget),,,,, = 750 km. The most frequent dimensions of the elements were: 500

m, 1 km, 5 km, 10 km, 100 km and 500 km. The statistics in case of applied local models are:
(amoel) ,;, = 10 m and the most frequent dimensions of elements were 25 m and 50 m. All model

computations given by Holstein et al. (1999) we have repeated for different ae {2400, 240, 2.4, 0.24,
0.024} [km] model dimensions to verify the dimensional independence of relation (212) both with
double precision denoted by r8 indices and quadruple precision denoted by r16 indices. The different
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dimensional models were generated from the Holstein model, multiplied the model vertices with a
constant C, Ce{100, 10, 0.1, 0.01, 0.001} and accordingly with this the coordinate of observation
points were (C-d, C-d, 0). For the volume element with & ~24 [km] dimension corresponds the C =1
scale factor. For every C and the corresponding model computation have to fulfil the following
relations:

U(d.d.0)=U(cd,cd ,0)/c?, U.(d,d,0)=U.(Cd,Cd,0)/C ,
U_(d,d,0)=U_(cd,Cd,0), (213)

where in the left side of the equations are the results obtained for the initial model (« = 24) and in the
right side of the equations are the results for the model with & = 24-C dimensions. This means that
for each « = 24.-C values the model computations are effectuated in (Cd, Cd, 0) points, where
d=d(v)=0()/2 [km], Sv)=Calyv) [km] and y=pv)=2"52" with different v values. The
observation results for gravitational potential and its first and second derivatives are presented
successively in Tables 6, 5 and 7. The (U,(Cd,Cd,0)):16/C values computed with different values of
the C parameter and fulfilling the condition v > 2.4 are the same up to ten decimal places, so these
values can be considered as reference or exact values notated by U, and listed in the 61 column of
Table 5. The same expressions ¢/ computed with double precision we have considered as
approximations of exact values U,. The columns with labels “abs. error in r16”, “abs. error in r8” and

“p= ‘(IZ/UZ —1) -100[%] ” give information about the magnitude of numerical errors obtained with

the different C values. By right of our computation the numerical error reaches 100% for v = 4.0
which is in accordance with the v value given by Holstein et al. (1999). The (U,(Cd,Cd,0)):16/C values
computed with different values for the C parameter and v > 2.0 are the same up to ten decimal places,
so these values can be considered as reference or exact values denoted by U and listed in the 6%
column of Table 6. The same expressions U computed with double precision we have considered as
approximation of exact values. The (UZZ(Cai,CaI,O))r1 o/ C values computed with different values of

the C parameter in domain defined by v > 1.4 are the same up to ten decimal places, so these values
can be considered as reference or exact values denoted by U,; and listed in the 6 column of Table 7.

The same expressions ¢7_ computed with double precision we have considered as approximation of

exact values. In case of gravitational potential and its second derivatives based on same model
computation we get successively v = 3.0 and v = 2.2 in case that errors attain 100 %.

The following part describes local and regional model computations (Benedek 2004, Benedek and
Papp 2009). As we mentioned previously the applied density models are composed from elementary
volume elements (prisms or polyhedrons) denoted by % with different dimensions. The error analysis
of these models is done by reconducting the Holstein model error analysis. For each X; model element
we assigned a scale factor C so that the element dimension will be approximately equal to C times
the dimension of the Holstein elementary model. Furthermore for each X; model element we assigned

a domain of the observation point defined by the minimal ( ; ) and maximal distance ( . ) of the

observation point from the centre of mass of Z; where the error of gravity potential and its derivatives
is less than 1%. For each X; volume element the coordinates of computation points were M(x =d, y =d, 0).

In this way for each % we can determine the dimensionless quantities (a/%) . =e,/h}  and

max

(a/n). =a,/hl, and for the complete model the (a/h)lnhlzrzllil{(a/h)i | and

max min min

(a/h),,, = m'm{(a/h)' } values where n is the number of model elements. In this investigation we
i=ln

max

have chosen the values of C so that they characterize the minimal, the maximal and the most frequent
volume elements dimensions applied in local and regional models. From this analysis we obtain the
following values: « € {600 km, 120 km, 24 km, 12 km, 4.8 km, 1.2 km, 480 m, 48 m, 24 m, 12 m}
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and correspondingly we obtain Ce {25, 5, 1, 0.5, 0.2, 0.05, 0.02, 0.002, 0.001, 0.0005} values for the
scaling factor. For each volume element characterized by the C scale factor the coordinate of
observation points were (C-d, C-d, 0). The values of x =y = d given in Tables 8, 9, 10 are the

observation distances corresponding to C = 1, and the relation d :10+24/ (\/5~(a/h)) is fulfilled

for d. In Tables 8, 9, 10 are presented successively the observation results of first derivatives of
potential, the geoid undulation values (N) computed from the gravitational potential using formula N
=U/9.780312 (Bruns formula). The computations were performed both in double and quad precision.
The quad precision computation results (gravitational potential and its first and second derivatives)
were independent from the C scale factor so we have considered them as reference or exact values.
The values computed with double precision we have considered as approximations of reference
values. The local model computations presented by Benedek and Papp (2009) can be characterized
by 3400 >a/h >107 arising from the volume elements dimension and the position of computation
points. From this numerical analysis (Table 8) we can conclude that in double precision computation
the numerical error of first derivatives of gravitational potential generated by each volume element is

i

U ) i _ ,
< 106 , where i denotes the i'" volume element of the density model, U_,

U! are the exact (computed with quad precision) and the approximate value (computed with double
precision) of first derivatives of gravitational potential in the domain of computation. Using the

less than 1%, i.e.

U -U!

2V,
PR (214)

U:-U! =
100 10

o.-v S0 Su S pr-u:
i=1 i=1 i=
inequality, where n is the number of volume elements in the applied density model we can deduce
that the numerical error of gravitational potential generated by the whole density model is less than
1% as well. Similarly we investigated the numerical error of gravitational potential and its second
derivatives generated by the regional density model used by Benedek and Papp (2009). The model
element and the domain of observation points can be characterized by the 17 >a/h >1.5.10"
inequality. Thus using the numerical error information given in Tables 9 and 10 we can conclude that
the numerical errors of gravitational potential and its second derivatives generated by this regional
model is far below 1%.
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1.2.10 DOMAIN OF DEFINITION OF ANALYTICAL FORMULAS AND ITS NUMERICAL PROPERTIES
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1.2.11 INVESTIGATION OF RUN-TIME EFFICIENCY OF CERTAIN ANALYTICAL FORMULAS 89

1.2.11. Investigation of run-time efficiency of certain analytical formulas

1(i)
The sum in analytical formula (176) of gravitational potential contains the h[ZQ[, term. From the
Jj=1
observation point of view it is advantageous first to compute the sum and then the product i.e.
1(i)
hiZQij. In order to choose the most efficient analytical expression it is advantageous if the domain

of definition of the expression coincides with its theoretical domain of definition. From Table 6 we
can conclude that for the Cjj, Qjj, Qi constants this assumption is realized for the WSt Qﬁ}"h"""as,

Q{j-"’“ei”3 and Q"Seh analytical formulas. The points where the analytical formulas of Cjj;, Qj, Qi
are not defined we have to take in consideration in the course of programming or we can avoid
singularities based on the fact that these points represent removable discontinuities. This means that
the constants Cj;, Qijj, Qi have discontinuities for which the constants’ limits exist and are finite. Thus
instead of U(M), U(M), Uu(M) we get approximations of these values U(M,e), Ux(M,g), Uu(M,e) as
small as is required substituting |hj|+¢ instead of |hj.

Using the CZ"'“‘”"“3 and Qﬁ}o"“”kagformulas (Table 6) and substituting |hi|+& instead of |hi| we get the
following approximations:

Cy, =sign(12,:/. )lnLVZU| sign (11::/ )ln

Toij, Toij,

=—Jsi 2hi/(lzij_lu/)
™ ZSIgn(hi )arCtan(% +”1z:/g)Z_(lzi/_llz:/)zJ”z(rzzig +rli/gX|hi|+g),

o+l

ul , (215)

(216)

where

Ty, =V Rip +(h + ), 1y _\/R +15 +(h o+ el ny \/R +12 +(h +e) . (217)

1ij 1ij

An estimation can be given of the errors |oV, U(M,s)= (M)-v,U(M,¢)
lsU(M,e)=[U(M)-U(M,e) and |6U, (M, e)=|U,(M)-U,(M,¢) induced by this approach

using the difference between the calculated approximation values U(M,g), U(M,g), U(M,g) and the
exact values U(M), Ux(M), U(M) making use of formulas (176), (178) and (180):

1(i 1
U(M) GIOO Zh (i hl/Cl/ h Q, J G'DO Zh (ﬁ (hi/Cf/ - hiQtfi )] ’

i=1l i=l Jj=1

n 1(i)
V,MU(M):—GpOZn{Z(hUCU hQ, )] (M)= GpOZn ﬁ(vi’,cy.—nfgy).
i=1 Jj=1

i=l1 Jj=1

Thus we have:

UM, &)= Gp"Zh[lihU J GpOZh[i(,j L —hQ, )J (218)

j=1

n 1(i)
M,g)z—GpOZni[Z(hijC% —hl.QijL_)] U, (M, &)= GpOZn f( L, —n'Q, ). (219)
1

i=l Jj=1
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Based on Pohanka (1988) we get an estimation of error |éV,M U(M ,gj =
Using the Egs. (56), (61), (62) of this paper we have:

v, UM)-v, UM,e).

Ih)|c, - ¢, |<e and |10, -0, [< 4. (220)

Based on eq. (66) of this paper it holds:

n (i)
|(3V,M U(M,g)| = V,MU(M)—V,MU(M,gj < G|p0|ZEZ:‘th."CU -C, +|hl.||Qy. -Q, |)s
i=l j=
<Glp3 3 56 = 5G] |3 L) (221)
i=1

=l j=1

Similarly we can get same relations for the gravitational potential and its second derivatives:
G n (i)
lsU(M, &) =U(M)-UM, &) < %Zz;(lhhj lc, -, |+nle, -, |) (222)
i=l j=

n 1)
6U,, (M, &) =|U,,(M)-U, (M, &) < Gpozz(]c,j -G, |+, -9, |) (223)

i=1 j=1

The problem can be interpreted as a stability one in the sense that inducing an infinitesimally small ¢
shift in the |hl.| variable we are interested in the impact of its on gravity field parameters i.e. we have

to clarify the relation between the & and |5 V,MU(M,SX [oUM,¢), [sU(M,e) quantities. Using

(220) we can give estimation of the |h

,.].||C,./.—C,.jy| and |h,.||Q,./.—Q,./.E| expression as functions of «.

Based on (221), (222) and (223) the |5 v, U(M,g} UM, &), |6U, (M, &) quantities can be
expressed in terms of |hl.,.||CU.—Cl.f€|, |Cl.,.—Cl:/.€| , |hihi,.||C'i/.—Ci/.€| , |hl.||Q,.j—QU€| , hiz|Qi,—Q,.jg| and
|Q,j —QU£|. We investigated numerically the variation of these terms as a function of ¢ by setting the

following values: &= 108, £= 105, &= 10%and &= 10%in points fulfilling the ¥ € (jtmin= 2-10°°,
smax = 10%) condition. The results are presented in Tables 11 and 12. In the near domain of the body

(y >>1) the term |Cl:/.—C,;,.€| becomes instable. In the model computations presented in the papers by

Benedek (2004) and Benedek and Papp (2009) the upper bound of jmeger is 10* (y < 10%), where Cjj is
stable as Table 11 shows. The estimated magnitude of the upper bound of the quantity |h,.j||Cl:,—Cl:,€|

(first row in Table 11) from a particular & differs (are consistently larger) from the upper bound
deduced theoretically. The quantity |h,y.||Clj—Cl,].E| is stable for each of the four selected ¢ values in the

7 € (Ymin, ymax) domain. |Ql.j—Q,.jg| becomes unstable near the surface of the polyhedron (y>>1). In case
of model computation restricted by jmodet <10* the condition |sz_ijg| becomes stable for &= 102,
£=107 (Table 12). The upper bound of |h,.||Q,.j—Q,.jg| determined numerically (first row of Table 12)

is consistently smaller than 4-¢ which is theoretically derived. The expression h,.2|Q,./.—Ql.jg| is stable

for each of the gravitational four selected & values on the domain y € (jmin, ymax). By right of these
numerical investigations we can conclude that the first and second derivatives of the gravitational
potential are stable on the domain y € (ymin= 2-10"°, ymax = 10%) for each & values. The gravitational

Geomatikai Kozlemények XIX, 2016



1.2.11 INVESTIGATION OF RUN-TIME EFFICIENCY OF CERTAIN ANALYTICAL FORMULAS 91

potential is stable on the domain y < 10* in case of £ = 10%°, & = 10%. For the other two values
& = 10% &= 10" choosing an adequate lower bound for y we can assure the stability of the
gravitational potential.

Table 11Numerical estimation of the upper bound of the |h‘.j||C,]. —Cl./.)| ) |C!.,. —CU’| ) |hl.,.h,||Cl./. —C,/.’| expressions as a function

of ewhere ¢is an infinitesimally small quantity which is introduced to modify the |h,.| value

e=10" e=107" e=107" e=107°
expression Upper computation Upper computation ~ Upper bound  computation ~ Upper bound ~ computation
bound domain bound domain domain domain

| B " c _c | 23¢ ye(2109,10%) 23¢  ye(2:109, 10%) 42 ye(2:10%, 10%) 25.¢ ye(2109, 10%)
vl K-g K<10%*  ye(2:10°,10°% K-g K<10™  ye(2:10°, 10%)
|C _cC. | 7.810%  ye(2-10°, 10%) 7.2:10%.¢ ye(2:10° 10%) 7.210%¢  ye(2-10°, 10%) 7.2.10%¢ ye(2-10°, 10%)
Ve 25¢ ye(2-109, 105 25& ye(2109,105) K-g K<10™ ye(2:109, 10 K.g K<10% ye(2.109, 10%)
i\ Cy—Cy | 236 ye(2109,10%) 246  ye(210° 10%) K-g K<10® ye(2109,10%) K.g K<10? ye(2-10°, 10%)

Table 12. Numerical estimation of the upper bound of the |h,.||Qﬁ —Q,./L| , |Qij‘Qf,; | h,»2|Q{/ —Qi/5| expressions as a function

of ¢where ¢is an infinitesimally small quantity which is introduced to modify the |hl.| value

e=10" e=107" e=10" e=107"
expression Upper computation Upper computation Upper computation Upper computation
bound domain bound domain bound domain bound domain

|h‘.||Q,.J—Q‘.j| 10 ye(1.510°%10%) 15¢& ye(l510°10%) 2le ye(1.510% 10%) 13  ye(1.510° 10%)

' K-g K<104Y€(1510%, 109 .. kgt vE(15:10%, 10%)

|Q ) | 3.2.10%¢ ye(1.510°, 10%) 6.3-10%¢ ye(1.5:10% 10%) 1.6.10%.¢ ye(1.5-10°,10%)  2.10%  ye(1.5-10°, 10%)

v 3.4.10%¢ ye(1.5-10° 10% 3.4.10%¢ ye(1.5-107, 10%) K-g K<10™ ye(1.5-10%, 10%) K.g K<10™* ye(1.5-10%, 10%)
100-¢  ye(1.510°,10%)  100-¢ ye(1.5-10%, 10%)

hl.2|Q,./.—Q,.J| 23¢  ye(l510°10%) 27-¢ ye(1.5107 10¥)K-g K<10®8ye(1.5-10°. 10%) K- K<107%® ye(1.5-10° 10%)

In certain points of the domain of definition of the analytical formulas of Cj, i, € these
expressions can become indeterminate. For example somewhere around the edge AB the Cj;can turn
into NaN, similarly around the plane s the Q;; can turn into NaN. These are is not real singularities
but numerical instabilities of the analytical formulas can appear. We found the following stability
domain for the particular analytical formulas of the Cj; and €; constants:

The Cfiotstemn, C‘i}"”“”"“s analytical expressions of the constant Cij have stability problems around
the edge AB. The stability of these formulas is provided by inequality constraints
10 = jmin < 7 < ymax = 10%. C/WS" is unstable near to AB, this can be avoided by restricting the
observation domain around AB/[AB] and [AB] to points fulfilling the inequalities
108= jmin < ¥ < pmax = 102 and 108= ymin< < 107 successively. The other analytical expressions of
Cij (CZ""“”"“l, ij""“""“z, CfiP6") are unstable in points around the edge AB which violate the
108= ymin< < 107 condition.

The instability of analytical formulas of Q; appears around the S; face. All analytical expressions
of Qi except QFS°" become unstable in points situated near to the vertices of Si. The value of Q; as
the observation point approaches these vertices across points situated in the s plane defined by the
face Si becomes unstable when the y > 108 condition is violated. Otherwise when the computation
point is outside the s plane the instability of Q; takes place when y > 10 In case of points situated
near to the S; edges the formulas ‘Qg_ohanka1 , ijohankaz ’ Qgphanka3 1 Q{}I_olstein1 , Qg_olsteinz ,
Q{j-"’“ei"3, Q75" becomes unstable. In addition if these points are situated on the plane s the

. - 1 2 3 2 i3
|nstab|I|ty of Qf’ohanka , Qf’ohanka , Qfohanka and Q{iolsteln , Qflulstem ’Qli/l/Sch occurs for Y > 108
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and y > 10 successively. In addition when the computation points are near to the edges of Sjand are
situated outside the s plane the instability of Q; takes place when y > 10% for all Q; analytical formulas.
In the inner points of S; and s\S; the condition y < 10 ensures the stability of ;.

Time consumption is an important consideration in selecting the optimal observation formula.
This was tested by a simple model with double precision computation. In the first test, the computation
was repeated in a single observation point (5-108 repetition for Cjj and 5-107 repetition for ;) in the
second test the computation was performed for a set of observation points and than this repeated. The
obtained results are presented in Tables 13 and 14. We can conclude that formula denoted by HWSch
has the best performance. Furthermore the time consumption of Cj; is approximately 20% of Q);
computational time.

Table 13. The time consumption (t) of constants using the repetition (nr) of one observation point. The computational time of
Cij constants are compared with computational time of Pohanka® formula. The Holstein® formulas were chosen as reference

(i)
formula for the Q;constants. The ZQ” sum in the Pohanka® formula (in our model computation I(i) = 3) consists of I(i) terms
Jj=1
of arctangent function. Using relation (221) the I(i) terms of the arctangent function can be transformed to only one term of the
arctangent function. The deduced formula is denoted by (Pohanka®)"

constants nr t%
Crohanka® 5.10° 100% (8.6 min)
Cgplstein 5.108 70% (6.0 min)
cZ,WSCh 5.108 60% (5.3 min)
irllf’ommka3 5.107 90% (3.9 min)
(Qlf’ohanka:‘)* 5.107 77% (3.3 min)
inolstein:" 5.107 100% (4.3 min)
Qusen 5.107 13% (0.6 min)

Table 14. The time consumtion (ta, ts) of constants using the repetition (nra, nrg) in case of observation points given in A and
B sets. The computational time of C; constants are compared with computational time of Pohanka® formula. The Holstein®

(i)
formulas were chosen as reference formula for the Q; constants. The Pohanka® formula > Q. (in our model computation
j=1

I(i) = 3) consist of I(i) terms of arctangent function. Using relation (221) the I(i) terms of the arctangent function can be
transformed to only one term of the arctangent function. The deduced formula is denoted by (Pohanka®)". The A and B sets
consist of 4930 and 8510 computation points

constants nra ta % nrg ts %
c{}ohunka3 5.10° 100% (10.6 min) 5.10° 100% (16.1 min)
Cliotstein 5.10° 61% (6.5 min) 5.10° 71% (11.4 min)
cpyvsen 5.10° 45% (4.6 min) 5.10° 60% (8.4 min)
QFohanka® 5.104 86% (4.6 min) 5.10* 88% (7.0 min)
(QPohanka®y: 5.10* 98% (5.2 min) 5.10* 86% (6.9 min)
Qiotstein® 5.104 100% (5.3 min) 5.104 100% (8.0 min)
Quseh 5.104 14% (0.7 min) 5.10* 13% (1.0 min)

1(i)
As we mentioned we can transform the I(i) terms of the sum ZQ,/. into one term using the following
Jj=1
relation:

J

Zatanxj =arg H(l+ixk) . (224)

Taking into account the limits of Q;, i.e. Q;je(-2w, -27) and the expression of Q;; as Ql.j=2atanxj , it

follows that Zatanx]. e(—n,n), thus expression arg H(l+ixk) can be determined uniquely.
j j
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Reducing the sum of I(i) number arctangent functions to one arctangent term we generate the
(QPohanka® formula (Tables 5, 6). The numerical behaviour of the (QF°"@mka*)" formula s the same
as Q{"’h“n"“3, except if we are approaching the limit points of S; across the s/Si points. Then the
instability of (Qf"h“”kag)*appears when the condition y < 108 is violated.

1.2.12 Description of the computational algorithm for gravitational potential and its derivatives
applied in gravity field modelling

In the following we present the computational algorithm developed by us. The analytical formulas
involved in the algorithm:

1(i
U(M, ) GpO Zh [z(h CUP:hanM; l‘geyf;‘nhanka’3 )j (225)
i=1 Jj=1
n 1(i) [}
U(M,g):—Gpo Zn (h Clj’gohanka Ige:;ohank ) (226)
i=1 =
i
U,(M.e)= GpOZn e ﬁ( e,CLoMm _p e sign(hy) O ) (227)

i=1 Jj=1

The definitions of the constants C’i’j‘;h“""“ H};Zh“""“ are:

C;:hanka3 :C;Z;hanka3 (lly' ’lzy_ :hy' ,hl_,e)zsign (121]' )m[l/”%vzy'] sign ([hj ) hl{w} (228)
ije ije
aPahanka _anhanku (l ) Z h Z (c) sign(h.)gz_}.’ohanka 3 :2atan 2h]l/ (229)
ije ije 1ij 27247 2"% > i)=%ije T,jg +l | e |+2 o Zis !
where

Zig = +Zé 'Qt/a_\fllzt/_'_Vthza ' ljé_\ll221j+VVU26 1 Ay Qz/g ije (230)

s I, xI,
+1
U A n il

l.=a,-a; Il ,=a, — H; = , B, = =u, xn,, (231)
ij ij+ ij* Cij | ij | |ay'+1 _aﬁ| |ln % li2| ij

by =@ =Ny Boyp = Qg — s (232)

Ly =ty by =ni vy, 2, =] = |”1 v by =l +1 (233)

n is the number of polyhedron faces, I(i) is the number of vertices of the it face.
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P(0,0,0)

Fig. 21 Geometrical explanation of quantities occurring in expression (230)

The normal vectors of the local coordinate system belonging to the i face and j vertex indices are
successively n; the normal vector of the i face, uij the normal vector of the edge connecting the j and
j+1 vertices belonging of the i face (succession j, j+1, j+2... of vertices is considered positively
oriented), vij is a unit vector situated in the plane S; and perpendicular to uij so that (g, ni, vi;) form a
right-handed system belonging to the (i, j) index pair. In practical implementation in the first step for
each plane S; the positive orientation of vertices is assigned as described in Section 1.2.3. Based on

this we start with an arbitrary orientation of vertices belonging to the face Si. We denote with

@y, ap,....a,...ay, the position vectors in order of initial considered orientation. If

> U’
f(al.ol+lﬁ><l[02)~f(x6,yc,z(;)<0 , then it means that the initial orientation is adequate, namely

a;=ay,l, =1, j=11() , where a,, a;5,....q;,....4;; denotes the desired positive oriented vertices.

If f(azf’1 +I %I, )~f(xG,yG,zG)>0 , then we will choose the opposite of initial orientation of vertices,

thus a; = ay; ., ol = ll.‘;(mzf »J =2,1(i) . We denote with (Xc, Y, Z¢) the coordinates of mass centre

of polyhedron, let f(x, y, z) be the analytical equation of the S; plane, i.e.:

x y z1
f(xy Z)= Xy Yy zp 1 ,

Xio Vio Zip 1

X3 Vis Zin 1

where a?} :(xn’ymzn)aafz :(x;zay[vzfz)’afz :(x[_‘s’yf.'i’z[}) :

The scalar quantities luj, L, hij, hi, zi belonging to the j vertex are computed using (231) relations.
The l4i;, hi, hij scalars geometrically represents the signed projection of rj on mij, ni, vij. The Cije, Gije
scalars are computed with formulas (228)-(229) in each vertex of each plane using the luj;, L, hij, hi,
ziand Wijs, Qijs, Vij quantities. luj, lij, hij, hi, zi are computed based on (232), substituting them in (229)
we obtain Wije, Qjjs, Vije, Where the first quantity represents the distance of computation point P to the
edge belonging to the j" vertex, the second and third ones are the distances of computation point from
the j and j+1vertices. The value of sign(h;) is -1, if n; points in the direction of half space determined
by the computation point and the S; plane, 0 if the computation point is located on S; plane and +1
otherwise. ¢ is an arbitrary small positive quantity introduced to avoid the singularities (Pohanka
1988) which can appear on polyhedron vertices, edges or faces. Thus all analytical expressions of
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gravitational filed related quantities presented previously will be valid in all space. Both in regional
and local modelling the value of & was chosen as 10",

The developed Fortran program in its present form works for a particular polyhedron with 5 faces,
namely truncated triangular prisms (two triangles and three quadrilaterals, see Fig. 21) which we
found to be the most suitable elementary volume element to describe the 3-D volume element model
of the crustal structure and density distribution of the regional model of Pannonian-Basin (Benedek
2004, Benedek and Papp 2009). The program can handle the degenerated volume elements which
occurs when one (triangular pyramid or tetrahedron) or two (quadrilateral pyramid) vertices of the
two triangle faces coincide. The input data of the program is a set of elementary volume elements of
truncated triangular prisms or their degenerated forms, i.e, triangular or quadrilateral pyramids given
by the coordinates of vertices. We get as output the gravitational potential and its derivatives
generated by the integrated model as a sum of gravitational effects generated by the input elementary
volume elements (principle of superposition). The input file consists of the geometrical (coordinates)
and physical parameters (density) of n truncated triangular prisms given in n rows and in each row
are listed the coordinates of six vertices of the truncated triangular prisms as x, y and z coordinates
and the density of particular volume elements comes last. The ranking of vertices is obtained from
the positive orientation as described previously of the one of the triangular face (assigned as top of
polyhedron) and this is followed by the adherent vertices of the other triangular face (assigned as
bottom of polyhedron), a total of 6 points i.e. 18 coordinates. The list of input data file of n volume
elements is:

TS NS TS SRS NS S SAS CS U S WS SRS NS SRS S S B S
XisXps X35 X45 X5 Xe5 V15 Vo5 V35 Va5 Vs V65215225235 2452552650 s

n n n n n n n n n n n n n n n n n n n
xl 5x27x3 5x4>x5 ’x(»’yl >y27y3 ,y4,y5 ’y(»’Z] 722’23 724525 ’Zéap 1

where the lower index indicates the rank of vertex, the upper index denotes the rank of volume
elements in the input file, p' is the density value of the i homogeneous polyhedron volume element.
In case of degenerate truncated triangular prisms one (triangular pyramid or tetrahedron) or two
(quadrilateral pyramid) vertices of top and bottom triangular faces are identical. The second input
data is the list of the observation points which can be randomly-spaced given by (Xe, Yr, zp)
coordinates or gridded data points generally given at the same height with respect to a reference
surface (geoid or ellipsoid) or to the terrain. The grid can be defined by its origin and cell sizes
(Ax, Ay), the horizontal coordinates of grid points can be specified by Ax, Ay, and by ny, ny grid points
number in the x and y direction. After we have finished data reading we shift the origin of the initial
coordinate system in the actual observation point (Xp, Ye, zp) (Fig. 21). The new coordinates of the k"
volume element will be:

X{ = Xp, Xy = Xp, Xy = X, Xy = Xpy X5 = XpyXg = Xpo W = Vpo Vs = Vps V3 = Vs V4 = Vs Vi = Vs
yé _ypzzlk _ZP7Z§ _vazsk —ZP,Zﬁ _ZPsZ;c _ZP»Zé _Zpapk-

The program starts to compute the gravitational effect generated by each volume element in this new
coordinate system with respect to the origin O(0,0,0). In case of each volume element we pass through
the faces. For the i" face is chosen the adequate order of vertices of this face which assign the positive
orientation to this polygonal face. Using (231)-(233) formulas we compute the lsjj, L, hij, hi, zi and
Wijs, Qijs Vije constants belonging to the it face, furthermore applying the (228)-(229) relations for

these constants we get 9{}‘;”“""“3, c{;gha"ka3. Passing through each face of the k™ polyhedron we
generate the mentioned constants and inserting these values into equations (225)-(227) we get the
gravitational potential and its derivatives generated by the k' volume element. Based on the
superposition principle the sum of the quantities belonging to the particular volume elements gives
the integrated gravitational effect.

Compared to the rectangular prism the analytical formulas of the gravitational potential and its higher

order derivatives are more complicated so their calculation is more time consuming. The necessary
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runtime is approximately twice (2.3 times) of what is required by rectangular prism computations. If
the model extension and/or resolution are increasing, the computational time will grow linearly. The
actual polyhedron model of the lithosphere that contains more than one million volume elements
needs approximately one month of computation time on a computer dedicated to general IT tasks if
the number of computation points is around 10°. The parallel programming of HP rx2800 i4 4-core
platform can reduce the computational time by more than 30 times, so the mentioned model
computations will take some days only.
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2 Theses

In the following the thesis formulated on basis of this work (first three theses) and on basis of two
publications (Benedek 2004, Benedek and Papp 2009) are presented:

¢*[y,j+rm
1. 1 defined the general solution f,.(rP):x—

2
Sup

s, Of that quasi-linear partial differential

. 1 . . I .
equation V,Pfl.(rp):— to which the analytical formula for the gravitational potential of a
Tvp

polyhedron can be reduced. In the general solution by choosing a suitable function ¢ we can get
the individual solutions of other authors back. I completed the existing analytical formulas for
the first order derivatives of the potential given by other authors with formulas for the potential
and the second order derivatives of the potential in case when these were not determined by
them.

| determined numerical stability ranges for constants involved in the analytical formulas of
gravitational potential and its first and second order derivatives. | also determined limiting values
of constants in critical points and | set up a classification for the formulas determining the
constants based on the needed computation time.

2. | gave an estimation and defined functions for the numerical errors of analytical formulas of
potential and its derivatives. The errors are for the polyhedron function of normalised distance
(normalisation was effectuated by linear dimension of polyhedron) of the computation point. |
handled the exponent appearing in these functions as a parameter. It was 2.2 and 3.0 in case of
the potential and the second order derivatives of the potential applying the conditions of double
precision computation and 100% error level. | showed that the numerical error is less than 1%
either for far (at e.g. GOCE orbital altitude) or near surface (<1 m) points if the polyhedron
model of the crustal structure of ALPACA (Alpine—Pannonian—Carpathian) region is used for
forward computations.

3. | found a correlation between the time of the computation and the computational parameters
(number of volume elements and observation points) of the polyhedron and rectangular prism
model. The time needed for calculating gravity potential and its first order derivative with the
algorithm developed by me is ~2 times more using polyhedrons than the one optimised by Nagy
(1988) for the rectangular prisms, applying double precision arithmetic.

4. Modelling the vertical gradient of gravity (VG) in near-surface points based on DTM having
10m x 10m resolution the rectangular prism approach does not provide enough accuracy. The
change of the second order derivatives by z of disturbing potential can be too high even between
adjacent points (25 m). In near surface points the second order derivative by z reacts sensitively
to the stepped structure of the modelled surface due to the geometry of the rectangular prism.
Therefore the observed correlation between the surface and the gradients, the existence of which
follows from the theory is very weak. The application of polyhedrons, however, may improve
significantly the correlation even if the resolution of the basic DTM is not increased as it is
proven by the computations on the Soskut test area of TUB. | also showed that using a
polyhedron model, the changes of the computed VG (vertical gradient) values between the 6
networks points correlate well with the changes of the VG values derived from in situ gravity
observations.

Geomatikai Kozlemények X1X, 2016



98

J BENEDEK

By the application of forward modelling, | demonstrated that the individual contributions of the
topography and of the upper mantle to the second derivatives of the disturbing potential T
certainly reaches one E6tvOs unit in the planned altitude (~250 km) of the GOCE (Gravity and
Steady-State Ocean Circulation Experiment) satellite. The contribution is only several
hundredths Eotvos in case of the Neogene-Quaternary sedimentary complex. Additionally, |
found that in the ALPACA region the effect of the Earth’s curvature is an average of 10% of the
absolute value of local contributions i.e. several hundredth E6tvos unit in the studied altitude
range (300 km — 400 km). Considering the topography the effect of the Earth’s curvature on the
second order derivatives of the potential highly exceeds the sensitivity of the satellite
gradiometer. In case of the sediments this effect is estimated to be within the expected noise
range of the measurements.

I found also that when one eliminates the effect of topography and of the sediments from the
measurements of GOCE, the gradient observations can be transformed into density contrast
values by means of inversion of the residual effect. It gives a real chance to increase the precision
of the density contrast values at the Moho surface.
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3 Outlook

Currently available high-resolution digital elevation models permit computations of terrain-related
gravitational parameters with an unprecedented accuracy. It is £0.1 mGal (1mGal=10"° m/s?) and 10 E
unit (1E6tves=10° s2) in terms of the first and second derivatives of the gravitational potential,
respectively. These grid models, however, mean a huge number of elementary polyhedron volume
elements (even ~100 million polyhedrons in case of a country as small as Hungary) the computation
of the gravitational effect of which is a real challenge when fully analytical solution is preferred. If
the characteristic number i.e. the number of volume elements times the number of observation points
is around 10% the runtime may take a few months on a single processor (core) designed for general
IT purposes. A static generalization technique presented in Journal of Geodesy (Benedek et al 2018),
however, may reduce the number of volume elements efficiently to 5 — 10 % if the known/estimated
accuracy of the terrain data is interpreted as a threshold parameter. The methods are based on the
statistical equivalence of a theoretically infinite number of models describing the reality represented
by erroneous data. This statistical rule makes the description of a surface with a triangular mesh
composed by a minimum number of triangles having variable dimensions possible. The measure of
optimization depends on the accuracy and the variability of the input data. In the range of the threshold
all the possible realizations of the real topography may give statistically equivalent results in
gravitational forward modelling. Obviously, the decrease of the number of volume elements has a
favourable influence on the computation time. Based on experience sometimes it can be decreased at
least to 10% of the processing time of the initial input model whereas the error of modelled data
remains consistent with the errors of input surface data.

The efficiency of the methods can be evaluated by the GGMplus model (Hirt et al. 2013) providing
data of Earth’s gravity at 200 m grid resolution with near-global coverage. By the application of the
proposed generalization technique the agreement between gravity data synthetically computed from
the local model HU-DTM30 and GGMplus gravity can be analysed up to the ultra-high frequency
components provided by the SRTM3 global elevation model for GGMplus. If the discrepancy is not
significant the use of the SRTM3 surface model instead of HU-DTM30 in the geodetic computations
can also be feasible but at the same time it reduces the computational time by a factor of 10 due to the
resolution differences. In this case even a global model can be applied for local/regional modelling of
the gravitational effect of the topographical masses in the ALCAPA region. Otherwise the merging
of the local terrain model (HU-DTM30) and the regional surface model (SRTM3) will be necessary
to generate a suitable topographical model which can describe the local gravity field with sufficient
accuracy.

The model optimization methods developed by us can be applied for the optimal discretization of
the ocean surface starting from source data (e.g. RECON_SEA_LEVEL_OST_L4 V) is an important
step in the modelling of the ocean loading effect in tidal analysis too. The triangular mesh describing
the water surface deforming in time according to the instantaneous tidal forces can be used to form a
volumetric model by polyhedron volume elements. Its time variant gravitational effect can be
calculated analytically in a global coordinate system. One of the main questions of the research is if
the ocean loading effect can be modelled consistently with the observations with sub-microgal
precision. Observations performed in the previous NKFIH-OTKA project (K101603) show that the
variation of M2 tidal amplitude strongly influenced by ocean loading effect may reach several tenths
of 1microGal in the Pannonian Basin. Based on synthetic loading data obtained from the FES2014
model the increase of the ratio should be much higher so an independent validation of the results is
necessary. An adequate ocean loading model quantitatively consistent with our tidal gravity
measurements will provide a tidal model even with sub-microGal accuracy for the Pannonian basin.
Elimination using an accurate tidal model will help the correct interpretation of tendencies of long
periodic and secular changes in the gravity field on a shorter time base. An improved tidal model will
help the quick indication of the gravity effect of these processes reducing the cost of monitoring.
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As a continuation of the work of Dezs6é Nagy (e.g. Nagy 1966) the forward modelling program
systems written by the applicants in Fortran language (on HP Unix platforms) are available from the
early '90s and from 2000 for the calculation of the gravitational effect of prism and polyhedron
volume elements, respectively, and are continuously developed. Although very complex modeller
systems equipped by graphical user interface, like IGMAS (Gotze and Lahmeyer 1988) also exist and
are available for the research community, basic research usually needs high flexibility in program
coding to defer to the continuously varying requirements and aims. As a result of it the Pl of this
proposal could e.g. speed up the calculation of the gravitational effect of the polyhedron volume
element so now it is only twice of what is needed when prisms (the computation of which has been
already optimized by Dezs6é Nagy) are applied.

For the task of regional gravity inversion a reliable regional model of the 3D density distribution
based on geological and seismological information, composed by rectangular volume elements
(prisms) of different dimensions is available for the Pannonian basin and its orogenic surroundings
for the uppermost 50 km of the lithosphere (Papp and Kalmar 1995, 1996, Papp and Benedek 2000,
Benedek and Papp 2009, http://www.ggki.hu/fileadmin/user_upload/ggki/Munkatarsak/papp/e-
cikkek/geoidl.html). The model contains four submodels of the main structural units of the
lithosphere: the models of the surface topography, the Neogene —Quaternary sedimentary complex,
the lower crust and the upper mantle. The limited spatial extent of this model and its relatively simple
density distribution restrict the accuracy of the computations. This model, however, is being updated
from time to time as more and more geological and geophysical data about the crustal structure of the
Pannonian basin become available. In addition, because of the rigorous functional relations between
the gravity field parameters computed from the density model by forward modelling, it is possible to
validate numerical methods (for example a specific solution of the Stokes integral) in a closed-loop
test way. The reliability of the model can be checked by different quantities of the observed gravity
field (e.g. measured gravity anomalies, geoid undulations computed from measured, potential related
data, etc.). This technique has been used to study the compaction of the Neogene-Quaternary
sedimentary filling of the Pannonian Basin, and its relation to the observed anomalous gravity field
(Papp and Kalmar 1995). In addition it has been proved that the local part of geoid undulation
(A < 300 km) can be successfully interpreted by the model (Papp 1996a, Papp and Kalmar 1996) at
the level of £10 cm in terms of standard deviations of the residual undulations. The 3D lithosphere
model of the Alpine-Carpathian-Pannonian region makes possible — by certain conditions — to
determine different parameters of the gravity field (gravity acceleration, geoid undulation, gravity
potential, gravity anomaly) analytically (Papp 1996a, Papp 1996b, Papp and Benedek 2000, Benedek
2001, Papp et al 2004, Papp et al 2009). Beyond rectangular prisms polyhedrons can also be used to
discretize the density distribution inside 3D models of geological structures (Benedek and Papp 2009,
Benedek 2009). This way the geometrical description of the density interfaces considered can be
significantly improved and modelling can be extended to global coordinate systems easily. In between
the interfaces, where data are available, further refinement of the discretization is possible.

For instance, the borehole measurements sampling vertically the sedimentary complex in the
Pannonian basin show significant compaction of the sedimentary rocks, providing typical non-linear
density-to-depth functions. Their weighted average density contrast is -460 kg/m? so the presence of
the sediments represents a significant lack of mass relative to the 2750 kg/m? average density of the
crust (the average crust is represented by one block with p = 2750 kg/m?). Taking this information
into account the model of Neogene-Quaternary sediments consists of ~31000 polyhedron volume
elements. A density contrast value averaged along the depth from the density-to-depth function is
assigned to each element. In this way (using the density contrast function) the Pre-Neogene crystalline
basement (Kilényi and Rumpler 1984, Brezsanszky 1989 and Kilenyi et al. 1991) is involved in our
lithosphere model with a constant density (ro = 2750 kg/m®) value.

In the case of surface topography geological maps from the area of Czech Republic, Slovakia
(Pavel Novak pers. comm.) and Hungary (Ronai 1985) were used to improve its density distribution
which significantly deviates from the 2670 kg/m® value uniformly used in forward modelling
(Volgyesi et al. 2005).
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Based on the unprecedented progress in satellite, but also airborne and terrestrial measurements
global/regional digital terrain models (e.g. SRTM3) and data sets describing the Earth’s inner
structure with high resolution give new possibilities for refined studies on a synthetic terrestrial
gravity field. This ensures both the spatial extension of the existing model of the lithosphere and the
improvement of its geometrical and physical parameters (Kalmar et al. 1996). In continental-scale
gravity field modelling the high resolution (3-arc-sec by 3-arc-sec), SRTM3 elevation model (Farr et
al. 2007) providing nearly global coverage and derived from the analysis of the Shuttle Radar
Topography Mission has a great importance (GGMPlus, Hirt et al. 2013) since the most dominant
near surface density interface is the topography itself (transition from 1000 kg/m® — 2700 kg/m?®
to ~ 0 kg/m?). Useful geometrical and physical data about the inner structure of the Earth is supplied
by PREM, the CRUST2.0 (Mooney et al. 1998) and CRUST1.0 (Laskei et al. 2013) in global scale.

Regionally  the freely available new Moho map (Grad et al. 2009,
http://www.igf.fuw.edu.pl/mohomap2007a) covering the European continent gives the possibility to
extend our present lithospheric model horizontally.

The application of prism volume elements, however, is limited by the extension of the model, due
to the curvature of the Globe. The application of polyhedron volume elements in a global Cartesian
coordinate system overrides this problem and improves the geometrical description of the bounding
surfaces. Choosing a proper density value for every polyhedron volume element according to the
geological/geophysical constraints it is possible to generate a density model with discrete density
distribution both in local map projection (planar) and global (e.g. WGS84) systems. Analytical
expressions for the gravity field of a polyhedral body with constant, linearly and polynomially varying
density are also available (Garcia-Abdealem J, 1992, 2005, Pohanka 1998, Hansen R O 1999, Holstein
H 2003, Zhou X 2009) thus can be conveniently implemented in the current program system used in
this stady. This enables modelling of the continuous density variation inside a single volume element
where the geological data justifies its existence.

Regional investigation of synthetic gradiometric data calculated from both prism- and polyhedron-
based density models shows that the effect of the difference between the two volume elements could
not be negligible at the Gravity Field and Steady-State Ocean Circulation Explorer (GOCE) orbit
altitude (Benedek 2009, Benedek and Papp 2009). The differences are mainly related to the effect of
the curvature and their magnitude depends on which structural part of the lithosphere is considered.
For the sediments it is in the range of noise of the gradiometric measurements whereas for the other
parts (e.g. topography) it is not negligible. Furthermore the model computation shows that the
anomalous individual contributions of the topography and the upper mantle to the second derivatives
of the disturbing potential can reach 1 E unit. In case of the Neogene - Quaternary sediments this
contribution is several hundredths of E unit only, but this is still higher than the measurement accuracy
at satellite altitude. At the GOCE altitude the dominance of regional variation can be observed,
ensuring the spectral consistency of the initial model and the residual effect which is a necessary
condition for the gravity inversion process.

The application of gravity gradients observed at GOCE satellite altitude is a current research topic
in global and regional geophysical interpretation (Bouman et al. 2016, Holzrichter 2013). For forward
model computations the tesseroid and polyhedron volume elements are both used. The lithospheric
structure of the Western Carpathian-Pannonian Basin region using 3D modelling was investigated by
Tasarova et al. (2009) and a gravity model of the region consistent with petrological data collected
from various geophysical datasets was determined. Later on the 3D lithosphere model LitMod 3D of
Central Europe was also compiled (Tasarova et al. 2016). It combines a large number of geophysical,
geological, and petrological data having different resolution. The results of these efforts can be
inferred and used as reference in the further investigations.

Our model optimization methods can be applied for the optimal discretization of the ocean surface
in order to model the ocean loading effects starting even from source data e.g.
https://podaac.jpl.nasa.gov/dataset/RECON_SEA LEVEL_OST_L4 V1. This model computation
will provide the gravity effect generated by the ocean loading effect in given location and epoch. One
of the main questions of the research is if the ocean loading effect can be modeled consistently with
the observations with sub-microGal precision.
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The two most well-known global environmental datasets are the Global Shuttle Radar Topographic
Mission (SRTM) Digital Elevation Model (Jarvis et al 2008) and the Advanced Spaceborne Thermal
Emission and Reflection Radiometer Global Digital Elevation Model (ASTER GDEM). The heights
of both models are referenced to the EGM96 geoid, the horizontal datum is WGS84. SRTM3 is post-
processed from SRTM data (Reuter et al. 2007) and has 3 arc second (approx. 90m) horizontal
resolution, ASTER GDEM has a resolution of 1 arc-sec. It is important to note that these models are
surface models and should be distinguished clearly from terrain models due to acquisition method.
The estimated vertical accuracies derived from comparison with geodetic network points are =16 m
at 90% confidence level, and +20 m at 95% confidence level (Papp and Sziics 2011). Both models
are publicly available.

A high resolution (30 m x 30 m) digital terrain model of Hungary became recently available which
allows the computation of terrain effects in gravitational modelling with a resolution higher than ever
before. This resolution, however, generates an unprecedented number of elementary polyhedron
volume elements (~100 millions) for the topography model. This is an increase by one order of
magnitude related to the recent model used for calculations which can only be handled applying the
model optimization methods previously described.

Since the GGMplus model (Global Gravity Model plus, Hirt et al. 2013) is available from 2013,
providing data of Earth’s gravity at 200 m resolution with near-global coverage, it can be efficiently
used to check the results of forward calculations of terrain effects from the available national digital
topographic model mentioned above. In this way the discrepancy between the elevation (i.e. surface)
and terrain models can be investigated according to the theoretical concepts (e.g. regularization of
boundary values for geoid determination) of physical geodesy. If the discrepancy is not significant
the use of the SRTM3 elevation model in the geodetic computations can be also reasonable which
reduces more than 10 times the computational time due to the lower resolution of the SRTM3 model.
Otherwise the combination of the local terrain model and the regional elevation model will be
necessary to generate a suitable topographical model which can describe the local effect of
topographical masses with sufficient accuracy (Papp et al. 2009).

It is also known that since 2015 the SRTM data are in the public domain at 1 arc-sec resolution
(30 m postings). The combination of this new elevation data set with the national DTM allows
generating an unprecedented-resolution (1 arc-sec) model of the topographic gravity field over the
entire ALCAPA.
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